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Abstract — Map Reduce is a programming model and an
associated implementation for processing and generating large
data sets with a parallel, distributed algorithm on a cluster.
Hadoop is an open-source implementation of Map Reduce
enjoying wide adoption and is often used for short jobs where
low response time is critical. Hadoop’s performance is closely
tied to its task scheduler implicitly assumes that cluster nodes
are homogeneous and tasks make progress linearly, and uses
these assumptions to decide when to speculatively re-execute
tasks that appear to be stragglers. In practice, the homogeneity
assumptions do not always hold. Specifically this occurs in a
virtualized data center, such as Amazon’s Elastic Compute
Cloud (EC2).but that the Hadoop’s scheduler can cause severe
performance degradation in heterogeneous environments. To
address this problem, a new scheduling algorithm Longest
Approximate Time to End (LATE) that is highly robust to
heterogeneity and it leads to improvement in response time.

Index Terms — Map Reduce, Virtualization, Homogeneity,
Heterogeneity, Scheduler and EC2.

1. INTRODUCTION

Today’s most popular computer applications are Internet
services with millions of users. The sheer volume of data that
these services work with has led to interest in parallel
processing on commodity clusters. The leading example is
Google, which uses its Map Reduce framework to process 20
petabytes of data per day [1]. Other Internet services, such as
e-commerce websites and social networks, also cope with
enormous volumes of data. These services generate
clickstream data from millions of users every day, which is a
potential gold mine for understanding access patterns and
increasing ad revenue. Furthermore, for each user action, a
web application generates one or two orders of magnitude
more data in system logs, which are the main resource that
developers and operators have for diagnosing problems in
production. The Map Reduce model popularized by Google is
very attractive for ad-hoc parallel processing of arbitrary data.
Map Reduce breaks a computation into small tasks that run in
parallel on multiple machines, and scales easily to very large
clusters of inexpensive commodity computers. Its popular
open-source implementation, Hadoop [2], was developed
primarily by Yahoo, where it runs jobs that produce hundreds
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of terabytes of data on at least 10,000 cores [4]. Hadoop is
also used at Facebook, Amazon, and Last.fm [5]. In addition,
researchers at Cornell, Carnegie Mellon, University of
Maryland and PARC are starting to use Hadoop for seismic
simulation, natural language processing, and mining web data
[5, 6]. A key benefit of Map Reduce is that it automatically
handles failures, hiding the complexity of fault-tolerance from
the programmer. If a node crashes, Map Reduce reruns its
tasks on a different machine. Equally importantly, if a node is
available but is performing poorly, a condition that we call a
straggler, Map Reduce runs a speculative copy of its task
(also called a “backup task”) on another machine to finish the
computation faster. Without this mechanism of speculative
executionl, a job would be as slow as the mishehaving task.
Stragglers can arise for many reasons, including faulty
hardware and misconfiguration. Google has noted that
speculative execution can improve job response times by 44%
[1]. In this work, we address the problem of how to robustly
perform speculative execution to maximize performance.
Hadoop’s scheduler starts speculative tasks based on a simple
heuristic comparing each task’s progress to the average
progress. Although this heuristic works well in homogeneous
environments where stragglers are obvious, we show that it
can lead to severe performance degradation when its
underlying assumptions are broken. We design an improved
scheduling algorithm that reduces Hadoop’s response time by
a factor of 2. An especially compelling environment where
Hadoop’s scheduler is inadequate is a virtualized data center.
Virtualized “utility computing” environments, such as
Amazon’s Elastic Compute Cloud (EC2) [3], are becoming an
important tool for organizations that must process large
amounts of data, because large numbers of virtual machines
can be rented by the hour at lower costs than operating a data
center year-round (EC2’s current cost is $0.10 per CPU hour).
For example, the New York Times rented 100 virtual
machines for a day to convert 11 million scanned articles to
PDFs [7]. Utility computing environments provide an
economic advantage (paying by the hour), but they come with
the caveat of having to run on virtualized resources with
uncontrollable variations in performance. We also expect
heterogeneous environments to become common in private
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data centers, as organizations often own multiple generations
of hardware, and data centers are starting to use virtualization
to simplify management and consolidate servers. We
observed that Hadoop’s homogeneity assumptions lead to
incorrect and often excessive speculative execution in
heterogeneous environments, and can even degrade
performance below that obtained with speculation disabled. In
some experiments as many as 80% of tasks were
speculatively executed.

Naively, one might expect speculative execution to be a
simple matter of duplicating tasks that are sufficiently slow.
In reality, it is a complex issue for several reasons. First,
speculative tasks are not free they compete for certain
resources, such as the network, with other running tasks.
Second, choosing the node to run a speculative task on is as
important as choosing the task. Third, in a heterogeneous
environment, it may be difficult to distinguish between nodes
that are slightly slower than the mean and stragglers. Finally,
stragglers should be identified as early as possible to reduce
response times. Starting from first principles, we design a
simple algorithm for speculative execution that is robust to
heterogeneity and highly effective in practice. We call our
algorithm LATE for Longest Approximate Time to End.
LATE is based on three principles: prioritizing tasks to
speculate, selecting fast nodes to run on, and capping
speculative tasks to prevent thrashing. We show that LATE
can improve the response time of Map Reduce jobs by a
factor of 2 in large clusters on EC2.

2. BACKGROUND

Hadoop’s implementation of Map Reduce closely resembles
Google’s [1]. There is a single master managing a number of
slaves. The input file, which resides on a distributed file
system throughout the cluster, is split into even-sized chunks
replicated for fault-tolerance. Hadoop divides each Map
Reduce job into a set of tasks. Each chunk of input is first
processed by a map task, which outputs a list of key-value
pairs generated by a user defined map function. Map outputs
are split into buckets based on key. When all maps have
finished, reduce tasks apply a reduce function to the list of
map outputs with each key. Figure 1 illustrates a Map Reduce
computation. Hadoop runs several maps and reduces
concurrently on each slave — two of each by default — to
overlap computation and 1/O. Each slave tells the master
when it has empty task slots. The scheduler then assigns it
tasks. The goal of speculative execution is to minimize a job’s
response time. Response time is most important for short jobs
where a user wants an answer quickly, such as queries on log
data for debugging, monitoring and business intelligence.
Short jobs are a major use case for Map Reduce. For example,
the average Map Reduce job at Google in September 2007
took 395 seconds [1]. Systems designed for SQL-like queries
on top of Map Reduce, such as Sawzall [9] and Pig [10],
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underline the importance of Map Reduce for ad-hoc queries.
Response time is also clearly important in a pay-by-the-hour
environment like EC2. Speculative execution is less useful in
long jobs, because only the last wave of tasks is affected, and
it may be inappropriate for batch jobs if throughput is the only
metric of interest, because speculative tasks imply wasted
work. However, even in pure throughput systems, speculation
may be beneficial to prevent the prolonged life of many
concurrent jobs all suffering from straggler tasks. Such nearly
complete jobs occupy resources on the master and disk space
for map outputs on the slaves until they terminate.
Nonetheless, in our work, we focus on improving response
time for short jobs.
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Figure 1 Map Reduce
2.1 Speculative Execution in Hadoop

When a node has an empty task slot, Hadoop chooses a task
for it from one of three categories. First, any failed tasks are
given highest priority. This is done to detect when a task fails
repeatedly due to a bug and stop the job. Second, non-running
tasks are considered. For maps, tasks with data local to the
node are chosen first. Finally, Hadoop looks for a task to
execute speculatively. To select speculative tasks, Hadoop
monitors task progress using a progress score between 0 and
1. For a map, the progress score is the fraction of input data
read. For a reduce task, the execution is divided into three
phases, each of which accounts for 1/3 of the score:

1. The copy phase, when the task fetches map outputs.

2. The sort phase, when map outputs are sorted by key.
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3. The reduce phase, when a user-defined function is
applied to the list of map outputs with each key.

In each phase, the score is the fraction of data processed.
Hadoop looks at the average progress score of each category
of tasks (maps and reduces) to define a threshold for
speculative execution: When a task’s progress score is less
than the average for its category minus 0.2, and the task has
run for at least one minute, it is marked as a straggler. All
tasks beyond the threshold are considered “equally slow,” and
ties between them are broken by data locality. The scheduler
also ensures that at most one speculative copy of each task is
running at a time. Although a metric like progress rate would
make more sense than absolute progress for identifying
stragglers, the threshold in Hadoop works reasonably well in
homogenous environments because tasks tend to start and
finish in “waves” at roughly the same times and speculation
only starts when the last wave is running. Finally, when
running multiple jobs, Hadoop uses a FIFO discipline where
the earliest submitted job is asked for a task to run, then the
second, etc. There is also a priority system for putting jobs
into higher-priority queues.

2.2 Assumption in Hadoop’s Scheduler

The Hadoop’s scheduler makes several implicit assumptions:
1. Nodes can perform work at roughly the same rate.

2. Tasks progress at a constant rate throughout time.

3. There is no cost to launching a speculative task on a node
that would otherwise have an idle slot.

4. A task’s progress score is representative of fraction of its
total work that it has done. Specifically, in a reduce task, the
copy, sort and reduce phases each take about 1/3 of the total
time.

5. Tasks tend to finish in waves, so a task with a low progress
score is likely a straggler.

6. Tasks in the same category (map or reduce) require roughly
the same amount of work.

As we shall see, assumptions 1 and 2 break down in a
virtualized data center due to heterogeneity. Assumptions 3, 4
and 5 can break down in a homogeneous data center as well,
and may cause Hadoop to perform poorly there too. In fact,
Yahoo disables speculative execution on some jobs because it
degrades performance, and monitors faulty machines through
other means. Facebook disables speculation for reduce tasks
[14]. Assumption 6 is inherent in the Map Reduce paradigm,
so we do not address it in this paper. Tasks in Map Reduce
should be small, otherwise a single large task will slow down
the entire job. In a well-behaved Map Reduce job, the
separation of input into equal chunks and the division of the
key space among reducers ensures roughly equal amounts of
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work. If this is not the case, then launching a few extra
speculative tasks is not harmful as long as obvious stragglers
are also detected.

3. HOW THE ASSUMPTIONS BREAK DOWN
3.1 Heterogeneity

The first two assumptions are about homogeneity: Hadoop
assumes that any detectably slow node is faulty. However,
nodes can be slow for other reasons. In a non-virtualized data
center, there may be multiple generations of hardware. In a
virtualized data center where multiple virtual machines run on
each physical host, such as Amazon EC2, co-location of VMs
may cause heterogeneity. Although virtualization isolates
CPU and memory performance, VMs compete for disk and
network bandwidth. In EC2, co-located VMs use a host’s full
bandwidth when there is no contention and share bandwidth
fairly when there is contention [12]. Contention can come
from other users’ VMs, in which case it may be transient, or
from a user’s own VMs if they do similar work, as in Hadoop.
We measure performance differences of 2.5x caused by
contention. Note that EC2’s bandwidth sharing policy is not
inherently harmful — it means that a physical host’s 1/O
bandwidth can be fully utilized even when some VMs do not
need it — but it causes problems in Hadoop. Heterogeneity
seriously impacts Hadoop’s scheduler. Because the scheduler
uses a fixed threshold for selecting tasks to speculate, too
many speculative tasks may be launched; taking away
resources from useful tasks (assumption 3 is also untrue).
Also, because the scheduler ranks candidates by locality, the
wrong tasks may be chosen for speculation first. For example,
if the average progress was 70% and there was a 2x slower
task at 35% progress and a 10x slower task at 7% progress,
then the 2x slower task might be speculated before the 10x
slower task if its input data was available on an idle node. We
note that EC2 also provides “large” and “extra-large” VM
sizes that have lower variance in I/0O performance than the
default “small” VMs, possibly because they fully own a disk.
However, small VMs can achieve higher 1/O performance per
dollar because they use all available disk bandwidth when no
other VMs on the host are using it. Larger VMs also still
compete for network bandwidth. Therefore, we focus on
optimizing Hadoop on “small” VMs to get the best
performance per dollar.

3.2 Other Assumptions

Assumptions 3, 4 and 5 are broken on both homogeneous and
heterogeneous clusters, and can lead to a variety of failure
modes. Assumption 3, that speculating tasks on idle nodes
costs nothing, breaks down when resources are shared. For
example, the network is a bottleneck shared resource in large
Map Reduce jobs. Also, speculative tasks may compete for
disk 1/O in 1/O-bound jobs. Finally, when multiple jobs are
submitted, needless speculation reduces throughput without
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improving response time by occupying nodes that could be
running the next job. Assumption 4, that a task’s progress
score is approximately equal to its percent completion, can
cause incorrect speculation of reducers. In a typical Map
Reduce job, the copy phase of reduce tasks is the slowest,
because it involves all-pairs communication over the network.
Tasks quickly complete the other two phases once they have
all map outputs. However, the copy phase counts for only 1/3
of the progress score. Thus, soon after the first few reducers in
a job finish the copy phase, their progress goes from 1/3 to 1,
greatly increasing the average progress. As soon as about 30%
of reducers finish, the average progress is roughly 0.3 « 1 +
0.7 « 1/3 = 53%, and now all reducers still in the copy phase
will be 20% behind the average, and an arbitrary set will be
speculatively executed. Task slots will fill up, and true
stragglers may never be speculated executed, while the
network will be overloaded with unnecessary copying. We
observed this behavior in 900-node runs on EC2, where 80%
of reducers were speculated. Assumption 5, that progress
score is a good proxy for progress rate because tasks begin at
roughly the same time, can also be wrong. The number of
reducers in a Hadoop job is typically chosen small enough so
that they can all start running right away, to copy data while
maps run. However, there are potentially tens of mappers per
node, one for each data chunk. The mappers tend to run in
waves. Even in a homogeneous environment, these waves get
more spread out over time due to variance adding up, so in a
long enough job, tasks from different generations will be
running concurrently. In this case, Hadoop will speculatively
execute new, fast tasks instead of old, slow tasks that have
more total progress. Finally, the 20% progress difference
threshold used by Hadoop’s scheduler means that tasks with
more than 80% progress can never be speculatively executed,
because average progress can never exceed 100%.

4. THE LATE SCHEDULER

We have designed a new speculative task scheduler by
starting from first principles and adding features needed to
behave well in a real environment. The primary insight behind
our algorithm is as follows: We always speculatively execute
the task that we think will finish farthest into the future,
because this task provides the greatest opportunity for a
speculative copy to overtake the original and reduce the job’s
response time. We explain how we estimate a task’s finish
time based on progress score below. We call our strategy
LATE, for Longest Approximate Time to End. Intuitively,
this greedy policy would be optimal if nodes ran at consistent
speeds and if there was no cost to launching a speculative task
on an otherwise idle node. Different methods for estimating
time left can be plugged into LATE. We currently use a
simple heuristic that we found to work well in practice: We
estimate the progress rate of each task as Progress Score/T ,
where T is the amount of time the task has been running for,
and then estimate the time to completion as (1 — Progress
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Score)/Progress Rate. This assumes that tasks make progress
at a roughly constant rate. There are cases where this heuristic
can fail, which we describe later, but it is effective in typical
Hadoop jobs. To really get the best chance of beating the
original task with the speculative task, we should also only
launch speculative tasks on fast nodes — not stragglers. We do
this through a simple heuristic — don’t launch speculative
tasks on nodes that are below some threshold, Slow Node
Threshold, of total work performed (sum of progress scores
for all succeeded and in-progress tasks on the node). This
heuristic leads to better performance than assigning a
speculative task to the first available node.

Another option would be to allow more than one speculative
copy of each task, but this wastes resources needlessly.
Finally, to handle the fact that speculative tasks cost
resources, we augment the algorithm with two heuristics:

1. A cap on the number of speculative tasks that can be
running at once, which we denote Speculative Cap.

2. A Slow Task Threshold that a task’s progress rate is
compared with to determine whether it is “slow enough”
to be speculated upon. This prevents needless speculation
when only fast tasks are running.

In summary, the LATE algorithm works as follows:

1. If a node asks for a new task and there are fewer than
Speculative Cap speculative tasks running:

2. Ignore the request if the node’s total progress is below
Slow Node Threshold.

3. Rank currently running tasks that are not currently being
speculated by estimated time left.

4. Launch a copy of the highest-ranked task with progress
rate below Slow Task Threshold.

Like Hadoop’s scheduler, we also wait until a task has run for
1 minute before evaluating it for speculation. In practice, we
have found that a good choice for the three parameters to
LATE are to set the Speculative Cap to 10% of available task
slots and set the Slow Node Threshold and Slow Task
Threshold to the 25th percentile of node progress and task
progress rates respectively. We use these values in our
evaluation. We have performed a sensitivity analysis to show
that a wide range of thresholds perform well.

Finally, we note that unlike Hadoop’s scheduler, LATE does
not take into account data locality for launching speculative
map tasks, although this is a potential extension. We assume
that because most maps are data-local, network utilization
during the map phase is low, so it is fine to launch a
speculative task on a fast node that does not have a local copy
of the data. Locality statistics available in Hadoop validate
this assumption.
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5. RELATED WORK

Map Reduce was described architecturally and evaluated for
end-to-end performance in [1]. However, [1] only briefly
discusses speculative execution and does not explore the
algorithms involved in speculative execution nor the
implications of highly variable node performance. Our work
provides a detailed look at the problem of speculative
execution, motivated by the challenges we observed in
heterogeneous environments. Much work has been done on
the problem of scheduling policies for task assignment to
hosts in distributed systems [18, 19].

However, this previous work deals with scheduling
independent tasks among a set of servers, such as web servers
answering HTTP requests.

The goal is to achieve good response time for the average
task, and the challenge is that task sizes may be
heterogeneous. In contrast, our work deals with improving
response time for a job consisting of multiple tasks, and our
challenge is that node speeds may be heterogeneous. Our
work is also related to multiprocessor task scheduling with
processor heterogeneity [20] and with task duplication when
using dependency graphs [21].

Our work differs significantly from this literature because we
focus on an environment where node speeds are unknown and
vary over time, and where tasks are shared nothing.
Multiprocessor task scheduling work focuses on environments
where processor speeds, although heterogeneous, are known
in advance, and tasks are highly interdependent due to inter
task communication. This means that, in the multiprocessor
setting, it is both possible and necessary to plan task
assignments in advance, whereas in Map Reduce, the
scheduler must react dynamically to conditions in the
environment. Speculative execution in Map Reduce shares
some ideas with “speculative execution” in distributed file
systems [11], configuration management [22], and
information gathering [23].

However, while this literature is focused on guessing along
decision branches, LATE focuses on guessing which running
tasks can be overtaken to reduce the response time of a
distributed computation and Finally, Data Synapse, Inc. holds
a patent which details speculative execution for scheduling in
a distributed computing platform [15].

The patent proposes using mean speed, normalized mean,
standard deviation, and fraction of waiting versus pending
tasks associated with each active job to detect slow tasks.
However, as discussed in earlier, detecting slow tasks
eventually is not sufficient for a good response time. LATE
identifies the tasks that will hurt response time the most, and
does so as early as possible, rather than waiting until a mean
and standard deviation can be computed with confidence.
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6. CONCLUSION

Motivated by the real-world problem of node heterogeneity,
we have analyzed the problem of speculative execution in
Map Reduce. We identified flaws with both the particular
threshold-based scheduling algorithm in Hadoop and with
progress-rate-based algorithms in general. We designed a
simple, robust scheduling algorithm, LATE, which uses
estimated finish times to speculatively execute the tasks that
affect the response time the most. LATE performs
significantly better than Hadoop’s default speculative
execution algorithm in real workloads on Amazon’s Elastic
Compute Cloud.
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