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Abstract – Map Reduce is a programming model and an 

associated implementation for processing and generating large 

data sets with a parallel, distributed algorithm on a cluster. 

Hadoop is an open-source implementation of Map Reduce 

enjoying wide adoption and is often used for short jobs where 

low response time is critical. Hadoop’s performance is closely 

tied to its task scheduler implicitly assumes that cluster nodes 

are homogeneous and tasks make progress linearly, and uses 

these assumptions to decide when to speculatively re-execute 

tasks that appear to be stragglers. In practice, the homogeneity 

assumptions do not always hold. Specifically this occurs in a 

virtualized data center, such as Amazon’s Elastic Compute 

Cloud (EC2).but that the Hadoop’s scheduler can cause severe 

performance degradation in heterogeneous environments. To 

address this problem, a new scheduling algorithm Longest 

Approximate Time to End (LATE) that is highly robust to 

heterogeneity and it leads to improvement in response time.  

Index Terms – Map Reduce, Virtualization, Homogeneity, 

Heterogeneity, Scheduler and EC2. 

1. INTRODUCTION 

Today’s most popular computer applications are Internet 

services with millions of users. The sheer volume of data that 

these services work with has led to interest in parallel 

processing on commodity clusters. The leading example is 

Google, which uses its Map Reduce framework to process 20 

petabytes of data per day [1]. Other Internet services, such as 

e-commerce websites and social networks, also cope with 

enormous volumes of data. These services generate 

clickstream data from millions of users every day, which is a 

potential gold mine for understanding access patterns and 

increasing ad revenue. Furthermore, for each user action, a 

web application generates one or two orders of magnitude 

more data in system logs, which are the main resource that 

developers and operators have for diagnosing problems in 

production. The Map Reduce model popularized by Google is 

very attractive for ad-hoc parallel processing of arbitrary data. 

Map Reduce breaks a computation into small tasks that run in 

parallel on multiple machines, and scales easily to very large 

clusters of inexpensive commodity computers. Its popular 

open-source implementation, Hadoop [2], was developed 

primarily by Yahoo, where it runs jobs that produce hundreds 

of terabytes of data on at least 10,000 cores [4]. Hadoop is 

also used at Facebook, Amazon, and Last.fm [5]. In addition, 

researchers at Cornell, Carnegie Mellon, University of 

Maryland and PARC are starting to use Hadoop for seismic 

simulation, natural language processing, and mining web data 

[5, 6]. A key benefit of Map Reduce is that it automatically 

handles failures, hiding the complexity of fault-tolerance from 

the programmer. If a node crashes, Map Reduce reruns its 

tasks on a different machine. Equally importantly, if a node is 

available but is performing poorly, a condition that we call a 

straggler, Map Reduce runs a speculative copy of its task 

(also called a “backup task”) on another machine to finish the 

computation faster. Without this mechanism of speculative 

execution1, a job would be as slow as the misbehaving task. 

Stragglers can arise for many reasons, including faulty 

hardware and misconfiguration. Google has noted that 

speculative execution can improve job response times by 44% 

[1]. In this work, we address the problem of how to robustly 

perform speculative execution to maximize performance. 

Hadoop’s scheduler starts speculative tasks based on a simple 

heuristic comparing each task’s progress to the average 

progress. Although this heuristic works well in homogeneous 

environments where stragglers are obvious, we show that it 

can lead to severe performance degradation when its 

underlying assumptions are broken. We design an improved 

scheduling algorithm that reduces Hadoop’s response time by 

a factor of 2. An especially compelling environment where 

Hadoop’s scheduler is inadequate is a virtualized data center. 

Virtualized “utility computing” environments, such as 

Amazon’s Elastic Compute Cloud (EC2) [3], are becoming an 

important tool for organizations that must process large 

amounts of data, because large numbers of virtual machines 

can be rented by the hour at lower costs than operating a data 

center year-round (EC2’s current cost is $0.10 per CPU hour). 

For example, the New York Times rented 100 virtual 

machines for a day to convert 11 million scanned articles to 

PDFs [7]. Utility computing environments provide an 

economic advantage (paying by the hour), but they come with 

the caveat of having to run on virtualized resources with 

uncontrollable variations in performance. We also expect 

heterogeneous environments to become common in private 
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data centers, as organizations often own multiple generations 

of hardware, and data centers are starting to use virtualization 

to simplify management and consolidate servers. We 

observed that Hadoop’s homogeneity assumptions lead to 

incorrect and often excessive speculative execution in 

heterogeneous environments, and can even degrade 

performance below that obtained with speculation disabled. In 

some experiments as many as 80% of tasks were 

speculatively executed. 

Naively, one might expect speculative execution to be a 

simple matter of duplicating tasks that are sufficiently slow. 

In reality, it is a complex issue for several reasons. First, 

speculative tasks are not free they compete for certain 

resources, such as the network, with other running tasks. 

Second, choosing the node to run a speculative task on is as 

important as choosing the task. Third, in a heterogeneous 

environment, it may be difficult to distinguish between nodes 

that are slightly slower than the mean and stragglers. Finally, 

stragglers should be identified as early as possible to reduce 

response times. Starting from first principles, we design a 

simple algorithm for speculative execution that is robust to 

heterogeneity and highly effective in practice. We call our 

algorithm LATE for Longest Approximate Time to End. 

LATE is based on three principles: prioritizing tasks to 

speculate, selecting fast nodes to run on, and capping 

speculative tasks to prevent thrashing. We show that LATE 

can improve the response time of Map Reduce jobs by a 

factor of 2 in large clusters on EC2. 

    2. BACKGROUND 

Hadoop’s implementation of Map Reduce closely resembles 

Google’s [1]. There is a single master managing a number of 

slaves. The input file, which resides on a distributed file 

system throughout the cluster, is split into even-sized chunks 

replicated for fault-tolerance. Hadoop divides each Map 

Reduce job into a set of tasks. Each chunk of input is first 

processed by a map task, which outputs a list of key-value 

pairs generated by a user defined map function. Map outputs 

are split into buckets based on key. When all maps have 

finished, reduce tasks apply a reduce function to the list of 

map outputs with each key. Figure 1 illustrates a Map Reduce 

computation. Hadoop runs several maps and reduces 

concurrently on each slave – two of each by default – to 

overlap computation and I/O. Each slave tells the master 

when it has empty task slots. The scheduler then assigns it 

tasks. The goal of speculative execution is to minimize a job’s 

response time. Response time is most important for short jobs 

where a user wants an answer quickly, such as queries on log 

data for debugging, monitoring and business intelligence. 

Short jobs are a major use case for Map Reduce. For example, 

the average Map Reduce job at Google in September 2007 

took 395 seconds [1]. Systems designed for SQL-like queries 

on top of Map Reduce, such as Sawzall [9] and Pig [10], 

underline the importance of Map Reduce for ad-hoc queries. 

Response time is also clearly important in a pay-by-the-hour 

environment like EC2. Speculative execution is less useful in 

long jobs, because only the last wave of tasks is affected, and 

it may be inappropriate for batch jobs if throughput is the only 

metric of interest, because speculative tasks imply wasted 

work. However, even in pure throughput systems, speculation 

may be beneficial to prevent the prolonged life of many 

concurrent jobs all suffering from straggler tasks. Such nearly 

complete jobs occupy resources on the master and disk space 

for map outputs on the slaves until they terminate. 

Nonetheless, in our work, we focus on improving response 

time for short jobs.  

 

Figure 1 Map Reduce 

2.1 Speculative Execution in Hadoop 

When a node has an empty task slot, Hadoop chooses a task 

for it from one of three categories. First, any failed tasks are 

given highest priority. This is done to detect when a task fails 

repeatedly due to a bug and stop the job. Second, non-running 

tasks are considered. For maps, tasks with data local to the 

node are chosen first. Finally, Hadoop looks for a task to 

execute speculatively. To select speculative tasks, Hadoop 

monitors task progress using a progress score between 0 and 

1. For a map, the progress score is the fraction of input data 

read. For a reduce task, the execution is divided into three 

phases, each of which accounts for 1/3 of the score:  

1. The copy phase, when the task fetches map outputs. 

2. The sort phase, when map outputs are sorted by key. 
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3. The reduce phase, when a user-defined function is 

applied to the list of map outputs with each key. 

In each phase, the score is the fraction of data processed. 

Hadoop looks at the average progress score of each category 

of tasks (maps and reduces) to define a threshold for 

speculative execution: When a task’s progress score is less 

than the average for its category minus 0.2, and the task has 

run for at least one minute, it is marked as a straggler. All 

tasks beyond the threshold are considered “equally slow,” and 

ties between them are broken by data locality. The scheduler 

also ensures that at most one speculative copy of each task is 

running at a time. Although a metric like progress rate would 

make more sense than absolute progress for identifying 

stragglers, the threshold in Hadoop works reasonably well in 

homogenous environments because tasks tend to start and 

finish in “waves” at roughly the same times and speculation 

only starts when the last wave is running. Finally, when 

running multiple jobs, Hadoop uses a FIFO discipline where 

the earliest submitted job is asked for a task to run, then the 

second, etc. There is also a priority system for putting jobs 

into higher-priority queues. 

2.2 Assumption in Hadoop’s Scheduler 

The Hadoop’s scheduler makes several implicit assumptions: 

1. Nodes can perform work at roughly the same rate. 

2. Tasks progress at a constant rate throughout time. 

3. There is no cost to launching a speculative task on a node 

that would otherwise have an idle slot.  

4. A task’s progress score is representative of fraction of its 

total work that it has done. Specifically, in a reduce task, the 

copy, sort and reduce phases each take about 1/3 of the total 

time. 

5. Tasks tend to finish in waves, so a task with a low progress 

score is likely a straggler. 

6. Tasks in the same category (map or reduce) require roughly 

the same amount of work. 

As we shall see, assumptions 1 and 2 break down in a 

virtualized data center due to heterogeneity. Assumptions 3, 4 

and 5 can break down in a homogeneous data center as well, 

and may cause Hadoop to perform poorly there too. In fact, 

Yahoo disables speculative execution on some jobs because it 

degrades performance, and monitors faulty machines through 

other means. Facebook disables speculation for reduce tasks 

[14]. Assumption 6 is inherent in the Map Reduce paradigm, 

so we do not address it in this paper. Tasks in Map Reduce 

should be small, otherwise a single large task will slow down 

the entire job. In a well-behaved Map Reduce job, the 

separation of input into equal chunks and the division of the 

key space among reducers ensures roughly equal amounts of 

work. If this is not the case, then launching a few extra 

speculative tasks is not harmful as long as obvious stragglers 

are also detected. 

3. HOW THE ASSUMPTIONS BREAK DOWN 

3.1 Heterogeneity  

The first two assumptions are about homogeneity: Hadoop 

assumes that any detectably slow node is faulty. However, 

nodes can be slow for other reasons. In a non-virtualized data 

center, there may be multiple generations of hardware. In a 

virtualized data center where multiple virtual machines run on 

each physical host, such as Amazon EC2, co-location of VMs 

may cause heterogeneity. Although virtualization isolates 

CPU and memory performance, VMs compete for disk and 

network bandwidth. In EC2, co-located VMs use a host’s full 

bandwidth when there is no contention and share bandwidth 

fairly when there is contention [12]. Contention can come 

from other users’ VMs, in which case it may be transient, or 

from a user’s own VMs if they do similar work, as in Hadoop. 

We measure performance differences of 2.5x caused by 

contention. Note that EC2’s bandwidth sharing policy is not 

inherently harmful – it means that a physical host’s I/O 

bandwidth can be fully utilized even when some VMs do not 

need it – but it causes problems in Hadoop. Heterogeneity 

seriously impacts Hadoop’s scheduler. Because the scheduler 

uses a fixed threshold for selecting tasks to speculate, too 

many speculative tasks may be launched; taking away 

resources from useful tasks (assumption 3 is also untrue). 

Also, because the scheduler ranks candidates by locality, the 

wrong tasks may be chosen for speculation first. For example, 

if the average progress was 70% and there was a 2x slower 

task at 35% progress and a 10x slower task at 7% progress, 

then the 2x slower task might be speculated before the 10x 

slower task if its input data was available on an idle node. We 

note that EC2 also provides “large” and “extra-large” VM 

sizes that have lower variance in I/O performance than the 

default “small” VMs, possibly because they fully own a disk. 

However, small VMs can achieve higher I/O performance per 

dollar because they use all available disk bandwidth when no 

other VMs on the host are using it. Larger VMs also still 

compete for network bandwidth. Therefore, we focus on 

optimizing Hadoop on “small” VMs to get the best 

performance per dollar.  

3.2 Other Assumptions  

Assumptions 3, 4 and 5 are broken on both homogeneous and 

heterogeneous clusters, and can lead to a variety of failure 

modes. Assumption 3, that speculating tasks on idle nodes 

costs nothing, breaks down when resources are shared. For 

example, the network is a bottleneck shared resource in large 

Map Reduce jobs. Also, speculative tasks may compete for 

disk I/O in I/O-bound jobs. Finally, when multiple jobs are 

submitted, needless speculation reduces throughput without 
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improving response time by occupying nodes that could be 

running the next job. Assumption 4, that a task’s progress 

score is approximately equal to its percent completion, can 

cause incorrect speculation of reducers. In a typical Map 

Reduce job, the copy phase of reduce tasks is the slowest, 

because it involves all-pairs communication over the network. 

Tasks quickly complete the other two phases once they have 

all map outputs. However, the copy phase counts for only 1/3 

of the progress score. Thus, soon after the first few reducers in 

a job finish the copy phase, their progress goes from 1/3 to 1, 

greatly increasing the average progress. As soon as about 30% 

of reducers finish, the average progress is roughly 0.3 • 1 + 

0.7 • 1/3 ≈ 53%, and now all reducers still in the copy phase 

will be 20% behind the average, and an arbitrary set will be 

speculatively executed. Task slots will fill up, and true 

stragglers may never be speculated executed, while the 

network will be overloaded with unnecessary copying. We 

observed this behavior in 900-node runs on EC2, where 80% 

of reducers were speculated. Assumption 5, that progress 

score is a good proxy for progress rate because tasks begin at 

roughly the same time, can also be wrong. The number of 

reducers in a Hadoop job is typically chosen small enough so 

that they can all start running right away, to copy data while 

maps run. However, there are potentially tens of mappers per 

node, one for each data chunk. The mappers tend to run in 

waves. Even in a homogeneous environment, these waves get 

more spread out over time due to variance adding up, so in a 

long enough job, tasks from different generations will be 

running concurrently. In this case, Hadoop will speculatively 

execute new, fast tasks instead of old, slow tasks that have 

more total progress. Finally, the 20% progress difference 

threshold used by Hadoop’s scheduler means that tasks with 

more than 80% progress can never be speculatively executed, 

because average progress can never exceed 100%. 

4. THE LATE SCHEDULER 

We have designed a new speculative task scheduler by 

starting from first principles and adding features needed to 

behave well in a real environment. The primary insight behind 

our algorithm is as follows: We always speculatively execute 

the task that we think will finish farthest into the future, 

because this task provides the greatest opportunity for a 

speculative copy to overtake the original and reduce the job’s 

response time. We explain how we estimate a task’s finish 

time based on progress score below. We call our strategy 

LATE, for Longest Approximate Time to End. Intuitively, 

this greedy policy would be optimal if nodes ran at consistent 

speeds and if there was no cost to launching a speculative task 

on an otherwise idle node. Different methods for estimating 

time left can be plugged into LATE. We currently use a 

simple heuristic that we found to work well in practice: We 

estimate the progress rate of each task as Progress Score/T , 

where T is the amount of time the task has been running for, 

and then estimate the time to completion as (1 – Progress 

Score)/Progress Rate. This assumes that tasks make progress 

at a roughly constant rate. There are cases where this heuristic 

can fail, which we describe later, but it is effective in typical 

Hadoop jobs. To really get the best chance of beating the 

original task with the speculative task, we should also only 

launch speculative tasks on fast nodes – not stragglers. We do 

this through a simple heuristic – don’t launch speculative 

tasks on nodes that are below some threshold, Slow Node 

Threshold, of total work performed (sum of progress scores 

for all succeeded and in-progress tasks on the node). This 

heuristic leads to better performance than assigning a 

speculative task to the first available node.  

Another option would be to allow more than one speculative 

copy of each task, but this wastes resources needlessly. 

Finally, to handle the fact that speculative tasks cost 

resources, we augment the algorithm with two heuristics: 

1. A cap on the number of speculative tasks that can be 

running at once, which we denote Speculative Cap. 

2. A Slow Task Threshold that a task’s progress rate is 

compared with to determine whether it is “slow enough” 

to be speculated upon. This prevents needless speculation 

when only fast tasks are running. 

In summary, the LATE algorithm works as follows: 

1. If a node asks for a new task and there are fewer than 

Speculative Cap speculative tasks running:  

2. Ignore the request if the node’s total progress is below 

Slow Node Threshold. 

3. Rank currently running tasks that are not currently being 

speculated by estimated time left. 

4. Launch a copy of the highest-ranked task with progress 

rate below Slow Task Threshold. 

Like Hadoop’s scheduler, we also wait until a task has run for 

1 minute before evaluating it for speculation. In practice, we 

have found that a good choice for the three parameters to 

LATE are to set the Speculative Cap to 10% of available task 

slots and set the Slow Node Threshold and Slow Task 

Threshold to the 25th percentile of node progress and task 

progress rates respectively. We use these values in our 

evaluation. We have performed a sensitivity analysis to show 

that a wide range of thresholds perform well. 

 Finally, we note that unlike Hadoop’s scheduler, LATE does 

not take into account data locality for launching speculative 

map tasks, although this is a potential extension. We assume 

that because most maps are data-local, network utilization 

during the map phase is low, so it is fine to launch a 

speculative task on a fast node that does not have a local copy 

of the data. Locality statistics available in Hadoop validate 

this assumption. 
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5. RELATED WORK 

Map Reduce was described architecturally and evaluated for 

end-to-end performance in [1]. However, [1] only briefly 

discusses speculative execution and does not explore the 

algorithms involved in speculative execution nor the 

implications of highly variable node performance. Our work 

provides a detailed look at the problem of speculative 

execution, motivated by the challenges we observed in 

heterogeneous environments. Much work has been done on 

the problem of scheduling policies for task assignment to 

hosts in distributed systems [18, 19].  

However, this previous work deals with scheduling 

independent tasks among a set of servers, such as web servers 

answering HTTP requests.  

The goal is to achieve good response time for the average 

task, and the challenge is that task sizes may be 

heterogeneous. In contrast, our work deals with improving 

response time for a job consisting of multiple tasks, and our 

challenge is that node speeds may be heterogeneous. Our 

work is also related to multiprocessor task scheduling with 

processor heterogeneity [20] and with task duplication when 

using dependency graphs [21].  

Our work differs significantly from this literature because we 

focus on an environment where node speeds are unknown and 

vary over time, and where tasks are shared nothing. 

Multiprocessor task scheduling work focuses on environments 

where processor speeds, although heterogeneous, are known 

in advance, and tasks are highly interdependent due to inter 

task communication. This means that, in the multiprocessor 

setting, it is both possible and necessary to plan task 

assignments in advance, whereas in Map Reduce, the 

scheduler must react dynamically to conditions in the 

environment. Speculative execution in Map Reduce shares 

some ideas with “speculative execution” in distributed file 

systems [11], configuration management [22], and 

information gathering [23].  

However, while this literature is focused on guessing along 

decision branches, LATE focuses on guessing which running 

tasks can be overtaken to reduce the response time of a 

distributed computation and Finally, Data Synapse, Inc. holds 

a patent which details speculative execution for scheduling in 

a distributed computing platform [15].  

The patent proposes using mean speed, normalized mean, 

standard deviation, and fraction of waiting versus pending 

tasks associated with each active job to detect slow tasks. 

However, as discussed in earlier, detecting slow tasks 

eventually is not sufficient for a good response time. LATE 

identifies the tasks that will hurt response time the most, and 

does so as early as possible, rather than waiting until a mean 

and standard deviation can be computed with confidence.  

6. CONCLUSION 

Motivated by the real-world problem of node heterogeneity, 

we have analyzed the problem of speculative execution in 

Map Reduce. We identified flaws with both the particular 

threshold-based scheduling algorithm in Hadoop and with 

progress-rate-based algorithms in general. We designed a 

simple, robust scheduling algorithm, LATE, which uses 

estimated finish times to speculatively execute the tasks that 

affect the response time the most. LATE performs 

significantly better than Hadoop’s default speculative 

execution algorithm in real workloads on Amazon’s Elastic 

Compute Cloud.  
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