A Ternary Quadratic Diophantine Equation

$$x^2 + y^2 = 10z^2$$

K.Geetha

Asst Professor, Dept.of Mathematics, Cauvery College for Women, Trichy, India.

Manju Somanath

Assistant Professor, Dept.of Mathematics, National College, Trichy, India.

M.A.Gopalan

Professor, Dept.of Mathematics, Shrimati Indira Gandhi College, Trichy, India.

Abstract – The Quadratic Diophatine equation with three unknowns represented by $x^2 + y^2 = 10z^2$ is analyzed for finding its non-zero distinct integral solutions. Different patterns of solutions of the equation under consideration are obtained. A few interesting properties among the solutions are presented.

Index Terms – Ternary quadratic equation with three unknowns, Integral solutions, Polygonal numbers, Pyramidal numbers and Special numbers.

2010 Mathematics Subject Classification: 11D09.

1. INTRODUCTION

1.1. Notations

 $t_{m,n}$ = Polygonal number of rank n with sides m

 p_m^n = Pyramidal number of rank n with sides m

 $ct_{m,n}$ = Centered Polygonal number of rank n with sides m

 p_n = Pronic number

 g_n = Gnomonic number

 $Tha_n = Thabit-ibn-Kurrah number$

 $car l_n = Carol number$

 Mer_n = Mersenne number

 $ky_n =$ Kynea number

The ternary homogeneous quadratic Diophantine equation offers an unlimited field for research because of their variety [1-2]. For an extensive review of various problems one may refer [3-11]. In this context one may also see [12-23]. This communication concerns with yet another interesting ternary quadratic equation $x^2 + y^2 = 10z^2$ for determining its infinitely many non-zero integral solutions. Also a few interesting properties among the solutions are presented.

2. METHOD OF ANALYSIS

The ternary quadratic equation representing homogeneous cone is

$$x^2 + y^2 = 10z^2 \tag{1}$$

We present below different patterns of non-zero distinct integral solutions to (1)

2.1. Pattern:1

The substitution of linear transformations $(u \neq \sigma \neq 0)$

$$x = u + \sigma, \ y = u - \sigma, \ z = \alpha$$
 (2)

in (1) leads to

$$u^2 + \sigma^2 = 5\alpha^2 \tag{3}$$

whose initial solution is

$$\alpha_0 = \sigma_{\text{and}} u_0 = 2\sigma$$

Let $(\partial_n^{\prime}, \partial_n^{\prime})$ be the general solution of the Pellian

$$u^2 = 5\alpha^2 + 1$$

Whom

$$\partial_{\Re}^{\prime} = \frac{1}{2\sqrt{5}} \left[\left(9 + 4\sqrt{5} \right)^{n+1} - \left(9 - 4\sqrt{5} \right)^{n+1} \right]$$

$$\mathcal{W}_{n} = \frac{1}{2} \left[\left(9 + 4\sqrt{5} \right)^{n+1} + \left(9 - 4\sqrt{5} \right)^{n+1} \right],$$

 $n = 0, 1, 2, \dots$

International Journal of Emerging Technologies in Engineering Research (IJETER) Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

Applying Brahmagupta's lemma between the solutions (α_0, u_0) and (α_0, u_0) the sequence of values of α and u satisfying equation (3) is given by $\alpha_{n+1} = \frac{\sigma}{2} \left[\left(9 + 4\sqrt{5} \right)^{n+1} + \left(9 - 4\sqrt{5} \right)^{n+1} \right] + \frac{\sigma}{\sqrt{5}} \left[\left(9 + 4\sqrt{5} \right)^{n+1} - \left(9 - 4\sqrt{5} \right)^{n+1} \right]$ (4) $u_{n+1} = \sigma \left[\left(9 + 4\sqrt{5} \right)^{n+1} + \left(9 - 4\sqrt{5} \right)^{n+1} \right] + \frac{\sigma\sqrt{5}}{2} \left[\left(9 + 4\sqrt{5} \right)^{n+1} - \left(9 - 4\sqrt{5} \right)^{n+1} \right]$ (5)

Substituting α_{n+1} and u_{n+1} in equation (2), we get the values of x_{n+1} , y_{n+1} and z_{n+1} . The non-zero distinct integrals values of x_{n+1} , y_{n+1} and z_{n+1} satisfying (1) are given by

$$\begin{split} x_{n+1} &= \sigma \Biggl(\Biggl(\left(9 + 4\sqrt{5} \right)^{n+1} + \left(9 - 4\sqrt{5} \right)^{n+1} \Biggr) + \frac{\sqrt{5}}{2} \Biggl(\left(9 + 4\sqrt{5} \right)^{n+1} - \left(9 - 4\sqrt{5} \right)^{n+1} \Biggr) + 1 \Biggr) \\ y_{n+1} &= \sigma \Biggl(\Biggl(\left(9 + 4\sqrt{5} \right)^{n+1} + \left(9 - 4\sqrt{5} \right)^{n+1} \Biggr) + \frac{\sqrt{5}}{2} \Biggl(\left(9 + 4\sqrt{5} \right)^{n+1} - \left(9 - 4\sqrt{5} \right)^{n+1} \Biggr) - 1 \Biggr) \\ z_{n+1} &= \sigma \Biggl(\frac{1}{2} \Biggl(\left(9 + 4\sqrt{5} \right)^{n+1} + \left(9 - 4\sqrt{5} \right)^{n+1} \Biggr) + \frac{1}{\sqrt{5}} \Biggl(\left(9 + 4\sqrt{5} \right)^{n+1} - \left(9 - 4\sqrt{5} \right)^{n+1} \Biggr) \Biggr) \end{split}$$

The recurrence relations on x_{n+1} , y_{n+1} and z_{n+1} are found to be

$$x_{n+3} - 18x_{n+2} + x_{n+1} = -16\sigma$$
$$y_{n+3} - 18y_{n+2} + y_{n+1} = 16\sigma$$
$$z_{n+3} - 18z_{n+2} + z_{n+1} = 0$$

2.2. Pattern:2

Write (1) as

$$10z^2 - y^2 = x^2 * 1 (6)$$

Write 1 as

$$1 = \left(\sqrt{10} + 3\right)\left(\sqrt{10} - 3\right) \tag{7}$$

Assume
$$x = 10a^2 - b^2$$
 (8)

where $a,b \neq 0$

Using (7) and (8) in (6), we get

$$(\sqrt{10}z + y)(\sqrt{10}z - y) = (\sqrt{10}a + b)^2(\sqrt{10}a - b)^2(\sqrt{10} + 3)(\sqrt{10} - 3)$$

On employing the method of factorization and equating the rational and irrational parts, we get

$$z = z(a,b) = 10a^2 + b^2 + 6ab$$
 (9)

$$y = y(a,b) = 30a^2 + 3b^2 + 20ab$$

Thus (8) and (9) represents non-zero distinct integral solutions of (1).

Properties:

$$x(2^{n},1) + z(2^{n},1) = 18Mer_{2n} + ky_{n} + car 1_{n} + 2Tha_{n} + 22$$
$$y(a,1) - z(a,1) - t_{42,a} \equiv 2 \pmod{33}$$

2.3. Pattern:3

Instead of (7), write 1 as

$$1 = \frac{\left(\sqrt{10} + 1\right)\left(\sqrt{10} - 1\right)}{9}$$
(10)

Using (10) and (8) in (6) and following the procedure as in pattern (2) the non-zero distinct solutions of (1) are given by

$$z = \frac{1}{3} \left(10a^2 + b^2 + 2ab \right)$$

$$y = \frac{1}{3} \left(10a^2 + b^2 + 20ab \right)$$

Choosing a = 3A, b = 3B the corresponding integral values of x, y and z satisfying the (1) are given by

$$x = x(A, B) = 90A^2 - 9B^2$$

$$y = y(A, B) = 30A^2 + 3B^2 + 60AB$$

$$z = z(A, B) = 30A^2 + 3B^2 + 6AB$$

Properties:

1.
$$x(2^n, 2n+1) = 30Tha_{2n} - 36p_n + 21$$

2.
$$y(n+1,n+1)-z(n+1,n+1)=2(t_{56,n}+40g_n+67)$$

2.4. Pattern: 4

Write (1) as

$$9z^{2} + z^{2} = x^{2} + y^{2}$$

$$9z^{2} - y^{2} = x^{2} - z^{2}$$

$$(3z + y)(3z - y) = (x + z)(x - z)$$
Write (11) as
$$\frac{3z + y}{x - z} = \frac{x + z}{3z - y} = \frac{A}{B}, B \neq 0$$
(11)

This is equivalent to the following two equations

$$-xA + yB + z(A+3B) = 0$$

 $xB + yA + z(B-3A) = 0$

On employing the method of cross multiplication, we get

$$x = -A^{2} + B^{2} - 6AB$$

$$y = -3A^{2} + 3B^{2} + 2AB$$

$$z = -A^{2} - B^{2}$$
(12)

Thus (12) represents non-zero distinct integral solutions of (1).

Properties:

1.
$$x(A+1,1)+z(A+1,1)+t_{12,A}-t_{8,A}+6g_A+14=0$$

2.
$$y(2, B^2 + 1) + 3 = ct_{6, B^2} + t_{16, B} + 3g_B$$

2.5. Pattern:5

Write 10 as

$$10 = (3+i)(3-i) \tag{13}$$

Assume, $z = a^2 + b^2 \tag{14}$

Using (13) and (14) in (1), we get

$$(x+iy)(x-iy) = (3+i)(3-i)(a+ib)^{2}(a-ib)^{2}$$

On employing the method of factorization and equating the real and imaginary parts, we get

$$x = x(a,b) = 3(a^{2} - b^{2}) - 2ab$$

$$y = y(a,b) = a^{2} - b^{2} + 6ab$$
(15)

Thus (14) and (15) represents non-zero distinct integral solutions of (1).

Properties:

1.
$$z(n,2n+1)-3x(n+1,n)+9g_n+18+n=ct_{20,n}+2t_{3,n}$$

2.
$$y(n+1,n)-ct_{12,n}-2g_n=0$$

Generation of solution:

Let (x_0, y_0, z_0) be the initial solution of (1). Then, each of the following triple of nonzero distinct integers based on x_0, y_0 and z_0 also satisfies (1)

Triple 1:
$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \\ z_{n+1} \end{pmatrix} = \begin{pmatrix} \frac{Y_{n+1}+1}{2} & \frac{Y_{n+1}-1}{2} & 10X_{n+1} \\ \frac{Y_{n+1}-1}{2} & \frac{Y_{n+1}+1}{2} & 10X_{n+1} \\ X_{n+1} & X_{n+1} & Y_{n+1} \end{pmatrix}$$

Where

$$X_{n+1} = \frac{1}{2\sqrt{20}} \left[\left(9 + 2\sqrt{20} \right)^{n+1} - \left(9 - 2\sqrt{20} \right)^{n+1} \right]$$

$$Y_{n+1} = \frac{1}{2} \left[\left(9 + 2\sqrt{20} \right)^{n+1} + \left(9 - 2\sqrt{20} \right)^{n+1} \right]$$

3. CONCLUSION

One may search for other patterns of solution and their corresponding properties.

REFERENCES

- Dickson L.E., "History of theory of numbers", Vol.2, Chelsea publishing company, New York, 1952.
- [2] Mordell L.J., "Diophantine Equations, Academic press, New York, 1969.
- [3] Gopalan M.A., and Pandichelvi V., "Integral solution of ternary quadratic equation z(x+y) = 4xy", Acta Ciencia Indica, Vol. XXXIVM, No.3, Pp.1353-1358, 2008.
- [4] Gopalan M.A., and Kalinga Rani J., "Observation on the Diophantine equation $y^2 = DX^2 + Z^2$ ", Impact J.Sci. Tech., Vol. 2, No. 2, Pp. 91-95, 2008.
- 91-95, 2008. [5] Gopalan M.A., and Pandichelvi V., "On ternary quadratic equation $X^2 + Y^2 = Z^2 + 1$ ", Impact J.Sci.Tech., Vol.2, No.2, Pp.55-58,
- [6] Gopalan M.A., Manju Somanath and Vanith N., "Integral solutions of ternary quadratic Diophantine equation $x^2 + y^2 = (k^2 + 1)^2 z^2$ ", Impact J.Sci. Tech., Vol. 2, No. 4, Pp. 175-178, 2008.

International Journal of Emerging Technologies in Engineering Research (IJETER) Volume 4, Issue 1, January (2016) www.ijeter.everscience.org

- [7] Gopalan M.A., and Manju Somanath "Integral solution of ternary quadratic Diophantine equation xy + yz = zx", Antartica J.Math., Vol.5, no.1, Pp.1-5, 2008.
- Gopalan M.A., and Gnanam A., "Pythagorean triangles and special polygonal numbers", International J.Math. Sci., Vol.9, No.1-2, Pp. 211-215, Jan-Jun 2010.
- Gopalan M.A., and Pandichelvi V., "Integral solution of ternary quadratic equation z(x-y) = 4xy", Impact J.Sci. Tech., Vol. 5, No.1, Pp.
- [10] Gopalan M.A., and Vijaya Sankar, "Observation on a Pythagorean
- problem", Acta Ciencia Indica, Vol. XXXVIM, No.4, Pp.517-520, 2010.
 [11] Gopalan M.A., and Kalinga Rani J., "On ternary quadratic equation $X^2 + Y^2 = Z^2 + 8$ ", Impact J.Sci. Tech., Vol. 5, No.1, Pp. 39-
- [12] Gopalan M.A., and Geetha D., "Lattice points on the Hyperboloid of two sheets $x^2 - 6xy + y^2 + 6x - 2y + 5 = z^2 + 4$ ", J.Sci. Tech., Vol. 4, No.1, Pp. 23-32, 2011.
 [13] Gopalan M.A., Vidyalakshmi S., and Kavitha A., "Integral points on the
- homogeneous cone $z^2 = 2x^2 7y^2$ ", Diophantus J.Math., Vol. 1, No.5, Pp. 127-136, 2012.
- [14] Gopalan M.A., Vidyalakshmi S., and Sumati G., "Lattice points on the hyperboloid of one sheet $4z^2 = 2x^2 + 3y^2 - 4$ ", Diophantus J.Math., Vol. 1, No.2, Pp. 109-115, 2012.
- [15] Gopalan M.A., Vidyalakshmi S., and Lakshmi K., "Lattice points on the hyperboloid of two sheets $3y^2 = 7x^2 - z^2 + 21$ ", Diophantus J.Math., Vol. 1, No.2, Pp. 99-107, 2012.
- [16] Gopalan M.A., Vidyalakshmi S., Usha Rani T.R., and Malika S., "Observations on $6z^2 = 2x^2 - 3y^2$ ", Impact J.Sci. Tech., Vol.6, No.1, Pp. 7-13, 2012.
- [17] Gopalan M.A., Vidyalakshmi S., and Usha Rani T.R, "Integral points on the non-homogeneous cone $2z^2 + 4xy + 8x - 4z + 2 = 0$ ", Global J.Math. Sci., Vol.2, No.1, Pp.61-67, 2012.
- [18] Gopalan M.A., and Geetha.K, "Integral points on the Homogeneous cone $x^2 = 26z^2 - 4y^2$ ", Asian Academic Research Journal of
- Multidisciplinary, Vol.1, Issue 4, Pp. 62.71, 2012. [19] Gopalan M.A., and Geetha.K, "Integral solution of ternary quadratic Diophantine equation $z^2 = a^2(x^2 + y^2 + bxy)$ ", Indian Journal of Science, Vol.2, No.4, Pp.82-85, 2013.
- [20] Gopalan M.A., and Geetha.K,Observations on the hyperbola $y^2 = 18x^2 + 1$, RETELL, Vol.13, No.1, PP.81-83, Nov 2012
- [21] Gopalan M.A., Geetha.K and Manju Somanath ,Integral solutions of quadratic equation with four unknowns $xy + z(x + y) = w^2$, Impact Journal of science and Technology, Vol.7, No.1, PP.1-8, Jan-Mar
- [22] Gopalan M.A., Geetha.K and Manju Somanath, "A ternary quadratic

$$8(x^2+y^2)-15xy+(x+y)+1=32z^2$$
,

Proceedings of the international conference on Mathematical methods and computation, Feb 13^{th} and 14^{th} 2014, 246-251.

[23] Gopalan M.A., Geetha.K and Manju Somanath, "A ternary quadratic Diophantine equation $7x^2 + 9y^2 = z^2$ ", Bulletin of Mathematics and statistics research, Vol.2, issue.1, Pp.1-8,2014.