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Abstract – Iris data are rather very complex and it is very difficult 

to predict the behavior of runoff based on temporal data sets. This 

paper has been proposes a Modified approach K-Means 

clustering and enhanced pca algorithm  which executes K-means 

algorithm this Algorithm approach is better in the process in large 

number of clusters and its time of execution is comparisons base 

on K-Mean,DBSCAN algorithm  approach. If the process 

experimental result is using the proposed algorithm it time of 

computation can be reduced with a group in runtime constructed 

data sets are very promising. Modified Approach of K Mean 

Algorithm and enhanced pca is better than K Mean and dbscan 

for Large Data Sets. 

Index Terms – Temporal, Clustering, Data mining, Hierarchical, 

Hard and soft clustering, Hydrological process, Time series 

sequences. Dbscan, Mkmeans, Epca. 

1. INTRODUCTION 

1.1. K-Medoids Methods  

In k-medoids methods a cluster is represented by one of its 

points. We have already mentioned this is an easy solution 

since it covers any attribute types and that medoids have 

embedded resistance against outliers since peripheral cluster 

points do not affect them. When medoids are selected, clusters 

are defined as subsets of points close to respective medoids, 

and the objective function is defined as the averaged distance 

or another dissimilarity measure between a point and its 

medoid. Two early versions of k-medoid methods are the 

algorithm PAM (Partitioning around Medoids) and the 

algorithm CLARA (Clustering LARge Applications) 

[Kaufman & Rousseeuw 1990]. PAM is iterative optimization 

that combines relocation of points between perspective clusters 

with re-nominating the points as potential medoids. The 

guiding principle for the process is the effect on an objective 

function, which, obviously, is a costly strategy. CLARA uses 

several (five) samples, each with 40+2k points, which are each 

subjected to PAM. The whole dataset is assigned to resulting 

medoids, the objective function is computed, and the best 

system of medoids is retained. Further progress is associated 

with Ng & Han [1994] who introduced the algorithm 

CLARANS (Clustering Large Applications based upon 

Randomized Search) in the context of clustering in spatial 

databases. Authors considered a graph whose nodes are the sets 

of k medoids and an edge connects two nodes if they differ by 

exactly one medoid. While CLARA compares very few 

neighbors corresponding to a fixed small sample, CLARANS 

uses random search to generate neighbors by starting with an 

arbitrary node and randomly checking maxneighbor neighbors. 

If a neighbor represents a better partition, the process continues 

with this new node. Otherwise a local minimum is found, and 

the algorithm restarts until numlocal local minima are found 

(value numlocal=2 is recommended). The best node (set of 

medoids) is returned for the formation of a resulting partition. 

The complexity of CLARANS is O in terms of number of 

points. Ester et al. [1995] extended CLARANS to spatial 

VLDB. They used R*-trees [Beckmann 1990] to relax the 

original requirement that all the data resides in core memory, 

which allowed focusing exploration on the relevant part of the 

database that resides at a branch of the whole data tree. 

1.2. Density-Based Partitioning  

An open set in the Euclidean space can be divided into a set of 

its connected components. The implementation of this idea for 

partitioning of a finite set of points requires concepts of density, 

connectivity and boundary. They are closely related to a point’s 

nearest neighbors. A cluster, defined as a connected dense 

component, grows in any direction that density leads. 

Therefore, density-based algorithms are capable of discovering 

clusters of arbitrary shapes. Also this provides a natural 

protection against outliers. Figure 4 illustrates some cluster 

shapes that present a problem for partitioning relocation 

clustering (e.g., k-means), but are handled properly by density-

based algorithms. They also have good scalability. These 

outstanding properties are tempered with certain 

inconveniencies.                                                                          
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From a very general data description point of view, a single 

dense cluster consisting of two adjacent areas with significantly 

different densities (both higher than a threshold) is not very 

informative. Another drawback is a lack of interpretability. An 

excellent introduction to density based methods is contained in 

the textbook [Han & Kamber 2001]. 

Since density-based algorithms require a metric space, the 

natural setting for them is spatial data clustering [Han et al. 

2001; Kolatch 2001]. To make computations feasible, some 

index of data is constructed (such as R*-tree). This is a topic of 

active research. Classic indices were effective only with 

reasonably low-dimensional data. The algorithm DENCLUE 

that, in fact, is a blend of a density-based clustering and a grid 

based preprocessing is lesser affected by data dimensionality. 

There are two major approaches for density-based methods. 

The first approach pins density to a training data point and is 

reviewed in the sub-section Density-Based Connectivity. 

Representative algorithms include DBSCAN, GDBSCAN, 

OPTICS, and DBCLASD. The second approach pins density to 

a point in the attribute space and is explained in the sub-section 

Density Functions. It includes the algorithm DENCLUE. 

1.3. Supervised Learning 

Relation to Supervised Learning Both Forgy’s k-means 

implementation and EM algorithms are iterative optimizations. 

Both initialize k models and then engage in a series of two-step 

iterations that: (1) reassign (hard or soft) data points, (2) update 

a combined model. This process can be generalized to a 

framework relating clustering with predictive mining [Kalton 

et al. 2001]. The model update is considered as the training of 

a predictive classifier based on current assignments serving as 

the target attributes values supervising the learning. Points’ 

reassignments correspond to the forecasting using the recently 

trained classifier. Liu et al. [2000] suggested another elegant 

connection to supervised learning. They considered binary 

target attribute defined as Yes on points subject to clustering, 

and defined as No on non-existent artificial points uniformly 

distributed in a whole attribute space. A decision tree classifier 

is applied to the full synthetic data. Yes–labeled leaves 

correspond to clusters of input data. The new technique CLTree 

(CLustering based on decision Trees) resolves the challenges 

of populating the input data with artificial No– points such as: 

(1) adding points gradually following the tree construction; (2) 

making this process virtual (without physical additions to input 

data); (3) problems with uniform distribution in higher 

dimensions. 

2. LITERATURE SURVEY 

We will first review the concepts of temporal data mining and 

how is differ from conventional time series sequences is 

depicted, then its various tasks along with different classes are 

described. Temporal data mining is concerned with extraction 

of hidden information of large sequential data sets. Sequential 

data means data that is ordered with respect to some constraint 

index. For example, time series constitute a popular class of 

sequential data, where records are indexed by time. It is clear 

that in temporal data mining it is the ordering among the 

records is very important and that ordering is the core to the 

data description/modeling rather than notion of time 

[3].Discovery of casual relationships and the discovery of 

similar patterns within the same time of sequences or among 

different temporally-oriented events (often called as time series 

analysis or trend analysis), are the two primarily task of 

temporal data mining [5]. The supreme goal of temporal data 

mining is to get wind of hidden relations between sequences 

and subsequence of events. One main difference between 

temporal and conventional time series data mining lies in the 

size and nature of data sets and the manner in which the data is 

collected [18]. The second major difference lies in the type of 

query that we want to estimate or discover from the data [3]. 

2.1. Temporal Data Mining Task: 

The possible objectives (or more often we called as „tasks‟) of 

temporal data mining can be classified as Association, 

Prediction, Classification , Clustering, Characterization, 

Search and retrieval, Pattern discovery, Trend analysis and 

lastly the Sequence Analysis [1]. 

Classes of Temporal Data 

A. Static Data 

Data are called static if all their feature values do not change 

with time, or change negligibly 16]. 

B. Sequences 

Sequences are commonly referred as ordered sequence of the 

events or transaction. Though there may not be any explicit 

reference to time, yet there exists a sort of qualitative temporal 

relationship (like before, after, during, meet and overlap etc.) 

between data items. 

C. Time Stamped 

This category of the temporal data has explicit time related 

informat ion. Relationship can be quantitative i.e. we can find 

the exact temporal distance between data element. The 

consequences obtained through this type of data may be 

temporal or non-temporal in nature. 

D. Time Series 

Time series data is special case of the time stamped data. In 

time series data events have uniform distance on the time scale. 

E. Fully Temporal 

Data of this category is fully time dependent. The inferences 

are also strictly temporal [1].Clustering has a long history, with 

lineage dating back to Aristotle [6]. In our text, we presented 

some important survey papers on clustering techniques, 
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1. Pedro Pereiva Rodrigous et al. [22] developed an 

incremental system for clustering streaming time series, using 

Online Divisive Agglomerative Clustering ODAC system 

using top-down strategy i.e. hierarchy of clusters. The system 

uses correlation as similarity measure. It do not need a 

predefined number of target clusters. It provides a good 

performance on finding the correct number of clusters obtained 

by a bunch of runs of k-Means. The disadvantage of this system 

is when the tree structure expands, the variables should move 

from root to leaf, when there is no statistical confidence on the 

decision of assignment may split variables. 

2. S. Mishra et al. [17] presented a comparative study based on 

K-means clustering and agglomerate hierarchical clustering for 

developing a predictive model for the discharge process. The 

analysis is carried out in hydrological daily discharge time 

series of Panchratna station in the river Brahmaputra and Barak 

Basin Organization in India. The author used Dynamic Time 

warping (DTW) for measuring similarities in the data. 

3. Ramoni et al. [23] the author presented a study on BCD, a 

Bayesian algorithm for clustering by dynamics. BCD 

transforms a set S of n numbers of univariate discrete-valued 

time series into a Markov chain (MC) and then clusters similar 

MCs to discover the most probable set of generating processes. 

BCD is basically an unsupervised algorithms based on 

agglomerative clustering method. The clustering result is 

evaluated mainly by a measure of the loss of data information 

induced by clustering, which is specific to the proposed 

clustering method. They also presented a Bayesian clustering 

algorithm for multivariate time series [24]. The algorithm 

Searches for the most probable set of clusters given the data 

using a similarity-based heuristic search method. The measure 

of similarity is an average of the Kullback–Liebler distances 

between comparable transition probability tables. 

4. Van Wijk and Van Selow [25] in [1999] analyse an 

agglomerate ive hierarchical clustering of daily power 

consumption data based on the root mean square distance. How 

the clusters attributed over the week and over the year were 

also explored with calendar-based visualization. 

5. Kumar et al. [26] in [2002] presented a distance function 

based on the assumed independent Gaussian models of data 

errors and used a hierarchical clustering method to group 

seasonality sequences into a desirable number of clusters. The 

experimental results based on simulated data and retail data 

showed that the new method outperformed both k-means and 

Wards method that do not consider data errors in terms of 

(arithmetic ic) average estimation error. 

6. Vlachos et al. [27] in [2003] introducing a novel anytime 

version of k-Means clustering algorithm for time series. It is an 

approach to perform incremental clustering of time-series at 

various resolutions using the Haar wavelet transform. Using k-

Means clustering algorithm, for the next level of resolution, 

they modified the final centers at the end of each resolution as 

the initial centers. By applying this approach the problem 

associated with the choices of initial centers for k-Means is 

completely resolved and it significantly improves the execution 

time and clustering quality. 

7. Li and Biswas [28] the authors described a clustering 

methodology for temporal data using the hidden Markov model 

representation. The temporal data are assumed to have Markov 

property, and may be viewed as the result of a probabilistic 

walk along a fixed set of (not directly observable) states. The 

proposed continuous HMM clustering method can be 

summarized in terms of four levels of nested searches. The 

HMM refinement procedure for the third-level search starts 

with an initial model configuration and incrementally grows or 

shrinks the model through HMM state splitting and merging 

operations. They generated an artificial data set from three 

random generative models: one with three states, one with four 

states, and one with five states, and showed that their method 

could reconstruct the HMM with the correct model size and 

near perfect model parameter values. 

8. Bicego, M. Et al. [29] in 2003 studied a novel scheme for 

HMM based sequential data clustering is proposed, inspired on 

the similarity based paradigm recently introduced in the 

Supervised learning context. With this approach, a new 

representation space is built, in which each object is described 

by the vector of its similarities with respect to a predeterminate 

set of other objects. These similarities are determined using 

hidden Markov models. Clustering is then performed in such a 

space. By way of this, the difficult problem of clustering of 

sequences is thus transposed to a more manageable format, the 

clustering of points (vectors of features). Experimental 

evaluation on synthetic and real data shows that the proposed 

approach largely outperforms standard HMM clustering 

schemes. The main drawback of this approach is the high 

dimensionality of the resulting feature space, which is equal to 

the cardinality of the data set. 

9. Paredes and Vargas [30] in [2012] their paper presents a 

novel method to perform clustering of time-series and static 

data. The method, named Circle-Clustering (CirCle), could be 

classified as a partition method that uses criteria from SVM and 

hierarchical methods to perform a better clustering. Different 

heuristic clustering techniques were tested against the CirCle 

method by using data sets from UCI Machine Learning 

Repository. In all tests, CirCle obtained good results and 

outperformed most of clustering techniques considered in this 

work. Results showed that Circle can be used with both static 

and time-series data. 

3. PROPOSED METHODS 

As a preprocessing stage of data mining and machine learning, 

dimension reduction not only decreases computational 

complexity, but also significantly improves the accuracy of the 
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learned models from large data sets. PCA [11] is a classical 

multivariate data analysis method that is useful in linear feature 

extraction. Without class labels it can compress the most 

information in the original data space into a few new features, 

i.e., principal components. Handling high dimensional data 

using clustering techniques obviously a difficult task in terms 

of higher number of variables involved. In order to improve the 

efficiency, the noisy and outlier data may be removed and 

minimize the execution time and we have to reduce the no. of 

variables in the original data set The central idea of PCA is to 

reduce the dimensionality of the data set consisting of a large 

number of variables. It is a statistical technique for determining 

key variables in a high dimensional data set that explain the 

differences in the observations and can be used to simplify the 

analysis and visualization of high dimensional data set.  

3.1. Principal Component  

A data set xi (i= 1,…,n) is summarized as a linear combination 

of ortho-normal vectors called principal components, which is 

shown in the Figure 1. 

 

The first principal component is an axis in the direction of 

maximum variance. The steps involved in PCA are  

Step1: Obtain the input matrix Table 

Step2: Subtract the mean  

Step3: Calculate the covariance matrix 

Step4: Calculate the eigenvectors and eigenvalues of the 

covariance matrix 

Step5: Choosing components and forming a feature vector 

Step6: deriving the new data set.  

The eigenvectors with the highest eigenvalue is the principal 

component of the data set. In general, once eigenvectors are 

found from the covariance matrix, the next step is to order them 

by eigenvalue, highest to lowest. To reduce the dimensions, the 

first d (no. of principal components) eigenvectors are selected. 

The final data has only d dimensions. The main objective of 

applying PCA on original data before clustering is to obtain 

accurate results so that the researchers can do analysis in better 

way. Secondly, minimize the running time of a system because 

time taken to process the data is a significant one. Normally it 

takes more time when the number of attributes of a data set is 

large and sometimes this dataset not supported by all the 

clustering techniques hence the number of attributes are 

directly proportional to processing time. In this paper, PCA is 

used to reduce the dimension of the data. This is achieved by 

transforming to a new set of variables (Principal Components) 

which are uncorrelated and, which are ordered so that the first 

few retain the most of the variant present in all of the original 

variables. The first Principal Component is selected to find the 

initial centroid for the clustering process. 

The proposed method that performs data partitioning with 

Principal component. It partitions the given data set into k sets. 

The median of each set can be used as good initial cluster 

centers and then assign each data points to its nearest cluster 

centroid. The Proposed model is illustrated in Figure 2. 

 

Algorithm 1: The proposed method 

Steps: 1.Reduce the dimension of the data into d dimension and 

determine the initial centroid of the clusters by using Algorithm 

2.  

2. Assign each data point to the appropriate clusters by using 

Algorithm  

3. In the above said algorithm the data dimensions are reduced 

and the initial centroids are determined systematically so as to 

produce clusters with better accuracy. 

 

The initial centroids of the clusters are given as input to 

Algorithm 3. It starts by forming the initial clusters based on 

the relative distance of each data-point from the initial 

centroids. The Euclidean distance is used for determining the 

closeness of each data point to the cluster centroids. For each 

data-point, the cluster to which it is assigned and its distance 

from the centroid of the nearest cluster are noted. For each 

cluster, the centroids are recalculated by taking the mean of the 

values of its data-points. The procedure is almost similar to the 

original k-means algorithm except that the initial centroids are 

computed systematically. The next stage is an iterative process 

which makes use of a heuristic method to improve the 

efficiency. During the iteration, the data-points may get 

redistributed to different clusters. The method involves keeping 
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track of the distance between each data-point and the centroid 

of its present nearest cluster. At the beginning of the iteration, 

the distance of each data-point from the new centroid of its 

present nearest cluster is determined. If this distance is less than 

or equal to the previous nearest distance, that is an indication 

that the data point stays in that cluster itself and there is no need 

to compute its distance from other centroids. This result in the 

saving of time required to compute the distances to k-1 cluster 

centroids. On the other hand, if the new centroid of the present 

nearest cluster is more distant from the data-point than its 

previous centroid, there is a chance for the data-point getting 

included in another nearer cluster. In that case, it is required to 

determine the distance of the data-point from all the cluster 

centroids. This method improves the efficiency by reducing the 

number of computations.  

Algorithm 3: Assigning data-points to clusters  

Steps: 1. Compute the distance of each data-point xi (1<=i<=n) 

to all the centroids cj(1<=j<=k) using Euclidean distance 

formula.. 

2. For each data object xi, find the closest centroid cj and assign 

xi to the cluster with nearest centroid cj and store them in array 

Cluster[ ] and the Dist[ ] separately. Set Cluster[i] = j, j is the 

label of nearest cluster. Set Dist[i]= d(xi, cj), d(xi, cj) is the 

nearest Euclidean distance to the closest center. 

3. For each cluster j (1<=j<=k), recalculate the centroids; 

4. Repeat  

5. for each data-point  

5.1 Compute its distance from the centroid of the present 

nearest cluster  

5.2 If this distance is less than or equal to the previous nearest 

distance, the data-point stays in the cluster Else For every 

centroid cj Compute the distance of each data object to all the 

centre Assign the data-point xi to the cluster with nearest 

centroid cj 6. For each cluster j (1<=j<=k), recalculate the 

centroids; 

Until the convergence criteria is met. 

This algorithm requires two data structure Cluster [ ] and Dist[ 

] to keep the some information in each iteration which is used 

in the next iteration. Array cluster [ ] is used for keep the label 

if the closest centre while data structure Dist [ ] stores the 

Euclidean distance of data object to the closest centre. The 

information in data structure allows this function to reduce the 

number of distance calculation required to assign each data 

object to the nearest cluster, and this method makes the 

improved k-means algorithm faster than the standard k-means 

algorithm. 

Modified approach K-mean algorithm: The K-mean algorithm 

is a popular clustering algorithm and has its application in data 

mining, image segmentation, bioinformatics and many other 

fields. This algorithm works well with small datasets. In this 

paper we proposed an algorithm that works well with large 

datasets. Modified k-mean algorithm avoids getting into locally 

optimal solution in some degree, and reduces the adoption of 

cluster -error criterion. Algorithm: Modified approach (S, k), 

S={x1,x2,…,xn } Input: The number of clusters k1( k1> k ) 

and a dataset containing n objects(Xij+). Output: A set of k 

clusters (Cij) that minimize the Cluster - error criterion. 

Algorithm 1. Compute the distance between each data point 

and all other data- points in the set D 2. Find the closest pair of 

data points from the set D and form a data-point set Am (1<= 

p <= k+1) which contains these two data- points, Delete these 

two data points from the set D 3. Find the data point in D that 

is closest to the data point set Ap, Add it to Ap and delete it 

from D 4. Repeat step 4 until the number of data points in Am 

reaches (n/k) 5. If p<=p<=k) find the arithmetic mean of the 

vectors of data points Cp(1<=p<=k) in Ap.  Select nearest 

object of each Cp(1<=p<=k) as initial centroid.  Compute the 

distance of each data-point di (1<=i<=n) to all the centroids cj 

(1<=j<=k+1) as d(di, cj)  For each data-point di, find the 

closest centroid cj and assign di to cluster j  Set Clustered[i]=j; 

// j:Id of the closest cluster  Set Nearest_Dist[i++]= d(di, cj)  

For each cluster j (1<=j<=k), recalculate the centroids  

Repeat 

Algorithm B 1. For each data-point di Compute its distance 

from the centroid of the present nearest cluster If this distance 

is less than or equal to the present nearest distance, the data-

point stays in the cluster Else ;  For every centroid cj 

(1<=j<=k) Compute the distance (di, cj); End for Assign the 

data-point di to the cluster with the nearest centroid Cj  Set 

Clustered[i] =j  Set Nearest_Dist[i] = d (di, cj); End for 

The m_k -means Algorithm Input: a set D of d-dimensional 

data and an integer K. Output: K clusters begin randomly pick 

K points ∈D to be initial means; while measure M is not stable 

do begin compute distance dkj = ||xj – zk||2 for each k, j where 

1 ≤ k ≤ K and 1 ≤ j ≤ N, and determine members of new K 

subsets based upon minimum distance to zk for 1 ≤ k ≤ K; 

compute new center zk for 1 ≤ k ≤ K using (3); compute M; 

end end The above algorithm reveals that the new clustering 

scheme is exactly similar to the original k-means algorithm 

except the only difference at the center computation step. In the 

following subsection, we shall try to prove that the m_k-means 

algorithm converges to kmeans centers and the rate of 

convergence is almost equal to that of the original k-means 

algorithm. 
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The K-means algorithm finds the predefined number of 

clusters. In the practical scenario, it is very much essential to 

find the number of clusters for unknown dataset on the runtime. 

The fixing of number of clusters may lead to poor quality 

clustering. The proposed method finds the number of clusters 

on the run based on the cluster quality output. This method 

works for both the cases i.e. for known number of clusters in 

advance as well as unknown number of clusters. The user has 

the flexibility either to fix the number of clusters or by input 

the minimum number of clusters required. In the former case it 

works same as K-means algorithm. In the latter case the 

algorithm computes the new clusters by incrementing the 

cluster counter by one in each iteration until it satisfies the 

validity of cluster quality threshold. The modified algorithm is 

as follows: Input: k: number of clusters (for dynamic clustering 

initialize k=2) Fixed number of clusters = yes or no (Boolean). 

D: a data set containing n objects. Output: A set of k clusters. 

Method:  

1. Arbitrarily choose k objects from D as the initial cluster 

centers. 

2. Repeat.  

3. (re)assign each object to the cluster to which the object is 

most similar, based on the mean value of the objects in the 

cluster 

4. Update the cluster means, i.e. calculate the mean value of the 

objects for each cluster. 

5. until no change. 

6. If fixed_no_of_clusters =yes goto 12. 

7. Compute inter-cluster distance using Eq.2  

8. Compute intra-cluster distance using Eq. 3.  

9. If new intra-cluster distance < old_intra_cluster distance and 

new_inter- cluster >old_inter_cluster distance goto 10 else 

goto 11 

10. k= k + 1 goto step 1. k= 1 , 2 , ………….K-1 and 

kk = k+1, ……………,K  

 11. STOP dynamic clustering of data with modified 

K-means Algorithm. 

4. EXPERIMENTAL RESULTS 

We evaluated the proposed algorithm on the data sets from UCI 

machine learning repository [9]. We compared clustering 

results achieved by the k-means, PCA+Mk-means with random 

initialization and initial centers derived by the proposed 

algorithm. 

S.No Algorithm  Accuracy  Time 

period  

1 MKMEANS 88.4 3.2 

2 DBSCAN 92.5 2.6 

3 EPCA 95.6 1.8 

 

 

 

5. CONCLUSIONS 

The main objective of applying EPCA on original data before 

clustering is to obtain accurate results. But the clustering results 

depend on the initialization of centroid. In this paper, we have 

proposed a new approach to initialize the centroid and reducing 

the dimension using principal component analysis to improve 

the accuracy of the cluster results and the standard Mk-means 

algorithm also modified to improve the efficiency by reducing 

the computation complexity of the algorithm. The experiment 

results show that the substantial improvement in running time 

and accuracy of the clustering results by reducing the 

dimension and initial centroid selection using EPCA. Though 

the proposed method gave better quality results in all cases, 
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over random initialization methods, still there is a limitation 

associated with this, i.e. the number of clusters (k) is required 

to be given as input. Evolving some statistical methods to 

compute the value of k, depending on the data distribution is 

suggested for future research. In the future, we plan to apply 

this method to microarray cancer datasets. 
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