International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016)

WWWw.ijeter.everscience.org

A Static Typestate Verifier FED with Enriched
Models

Immanuel Joshua.F
M.Tech , Database Engineering, Indian Institute Of Information Technology Srirangam, India.

S. Jayanthi
Assistant Professor, Department of Computer Science and Engineering,
Anna University of Technology Thiruchirappalli, India.

Abstract — Dynamic specification mining observes program
executions to infer models of normal program behavior. What
makes us believe that we have seen sufficiently many executions?
The TAUTOKO (“Tautoke” is the Ma“ori word for “enhance,
enrich.”) typestate miner generates test cases that cover
previously unobserved behavior, systematically extending the
execution space, and enriching the specification. To our
knowledge, this is the first combination of systematic test case
generation and typestate mining—a combination with clear
benefits: On a sample of 800 defects seeded into six Java subjects,
a static typestate verifier fed with enriched models would report
significantly more true positives and significantly fewer false
positives than the initial models.

Index Terms - Specification mining, test case generation,
typestate analysis.

1. INTRODUCTION

In the past decade, automated validation of software systems
has made spectacular progress. On the testing side, it is now
possible to automatically generate test cases that effectively
explore the entire program structure; on the verification side,
we can now formally prove the absence of undesired properties
for software as complex as operating systems [1]. To push
validation further, however, we need specifications of what the
software actually should do. Writing such specifications has
always been hard—and, so far, prohibited the deployment of
advanced development methods. A potential alternative is
specification mining—i.e., extracting high-level specifications
from existing code. In the context of this work, a specification
is a model that is extracted from an existing program, rather
than a manually written specification, which usually exists
before the program is written.

To have mined specifications reflect normal rather than
potential usage, dynamic specification mining observes execu-
tions to infer common properties. Typical examples of dynamic
approaches include DAIKON [10] for invariants or GK-tail for
object states. A typical application of mined specifications is
program understanding, and under the assumption that the
observed runs represent valid usage, the mined specifications
also represent valid behavior. The common issue of
specification mining techniques, though, is that they are limited

ISSN: 2454-6410

to the (possibly small) set of observed.

To address this problem, we use test case generation to
systematically enrich dynamically mined specifications. Com-
bined this way, both techniques benefit from each other can
profit from mined specifications, as their complement points to
behavior that should be explored. The goal of this work is to
explore the extent to which the quality of dynamically mined
specifications can benefit from generated tests.

In a nutshell, we leverage our earlier work [8], [9] to
dynamically mine typestate specifications—finite state
automata describing transitions between object states. The
initially mined specification contains only observed transitions
(Section 2). To enrich the specification, our TAUTOKO tool
generates test cases to cover all possible transitions between all
observed states, and thus extracts additional states and
transitions from their executions. These transitions can either
end in legal states, thus indicating additional legal interaction,
or they can raise an exception, thus indicating illegal
interaction. Discovering such illegal interactions is the biggest
advantage of our approach, as exceptional behavior is rarely
covered by conventional executions or tests. How can we
assess the benefits of such enriched specifications? For this
purpose, we put them to use in static typestate verification.
Typestate verification statically discovers illegal transitions. Its
success depends on the completeness of the given
specification: The more transitions are known as illegal, the
more defects can be reported; and the more transitions are
known as legal, the more likely it is that additional transitions
can be treated as illegal. We expect that our enriched
specifications are much closer to completeness than the
initially mined specification On a sample of 800 defects seeded
into six Java subjects, we show that our static typestate verifier
fed with enriched models reports significantly more true
positives than when being fed with the initial models.* We
expect this increased accuracy to generalize toward arbitrary
uses of mined specifications, and thus conclude (Section 6) that
test case generation is a useful method to enrich dynamically
mined specifications.

This paper extends an earlier version presented at ISSTA 2010

©EverScience Publications 14



International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016)

[7]. The previous version used a test case generation that was
limited to mutation of existing tests. This paper includes an
alternative approach which does not require existing test cases.
Starting with an automatically generated initial test suite
satisfying a standard criterion such as branch coverage, we
iteratively derive new test cases from the typestate automaton
to systematically explore the behavior of the considered target
class. In this paper, we compare the performance of both
techniques and discuss advantages and disadvantages of each
approach.

2. MINING TYPESTATES

A typestate automaton (or simply typestate) is a finite state
automaton which encodes the legal usage of a class under test
(CUT). Its states represent different states of an object, and
transitions are labeled with method names. As an example,
consider the typestate for the SMTPProtocol class from the
ristretto [7] library. After initialization, an SMTPProtocol
object is in its initial state 0; calling open-Port() brings it into
state 1; and calling quit() from this state brings it back into the
initial state 0.

If an invocation of method m in state s causes an exception, the
typestate contains a transition from s to a special state ex
labeled with m. In our example, this is the case if quit() is
invoked from the initial state 0; this raises a
NullPointerException. A static typestate verifier can take this
very specification and check a client for con-formance; if it is
possible to invoke quit() while still being in the initial state O,
the verifier will flag an error.

To obtain such typestate specifications from programs, we
leverage the ADABU tool presented in earlier work [8], [9].
ADABU mines so-called object behavior models that capture
the behavior of objects at runtime. A behavior model for an
object o is a nondeterministic finite state automaton where
states are labeled with the values of fields that belong to o, and
transitions occur when a method invoked on o changes the
state. Fig. 3 shows an object behavior model for an instance of
SMTPProtocol. This model was mined by ADABU from an
execution of the regression test suite for SMTPProtocol.

To mine such models from a program run, ADABU
instruments the program such that the values of all fields from
an instance of the CUT are captured after every method call.
Each set of field values uniquely describes the state of the
object, and the sequence of states and method calls uniquely
describes the object behavior model for the observed instance
of the CUT. The advantage of using field values to label states
is that equivalent object states are easy to detect, since they
have the same labeling. Other automata-based specification
mining techniques [6] have to resort to heuristics to solve this
problem, which may lead to overgeneralizations in the learned
automata.

The challenge with using concrete field values is that the

ISSN: 2454-6410

WWWw.ijeter.everscience.org

number of states in a model may become very large, and the
models are difficult to compare. In the example in Fig. 3, the
value of variable socket is the object identifier for the Socket
object. In another run of the program, this value might be
different due to scheduling, and hence the states would be
different in both models.

However, this difference is not important both for the behavior
of the class. Instead, what matters is that the socket is not null
so that the protocol is able to communicate with the server.
Hence, instead of using concrete values, ADABU uses abstract
values: Complex fields are mapped to null or not null,
numerical fields are mapped to less than, equal to, or larger than
zero, and Boolean fields remain unchanged.

This approach is based on work of Liblit et al. [9] that uses the
same abstractions in the context of bug localization. State
abstraction reduces the size of the models and makes them
comparable across program runs. However, this technique also
entails a loss of information, as the abstract models are less
detailed than the concrete models. In our experience, the above
approach provides a good tradeoff between the size of a model
and its expressiveness. In this paper, we use ADABU to mine
object behavior models and then convert them into typestate
automata. The idea for this approach is based on the
observation that typestates and object behavior models are
closely related. The two main differences are as follows:

State. In typestate automata, states are anonymous; in object
behavior models, they are labeled with the values of fields.

Exceptions. Typestates represent failing method calls by
transitions to a special state ex. In object behavior models,
information about exceptions is only stored at edges.

1. The automaton is initialized with two states labeled
start and ex.

2. Each state s of the behavior model is assigned a unique
number n, and a corresponding state labeled n is added
to the typestate.

3. For each invocation of a method m between two states
siand sj, a new transition labeled with m is added to the
typestate: If the invocation raised an exception, the
transition is added from s; to ex, otherwise it is added
from s; to s;.

The typestate introduced earlier was not specified manually,
but automatically obtained from the object behavior model. For
the remainder of this paper, we will use the term “mine
typestate automata” to summarize the process of mining object
behavior models and converting them to typestate automata.

3. ENRICHING TYPESTATES

To vyield precise results and few false positives during
verification, a typestate needs to be complete, i.e., it needs to
contain all relevant states and transitions for all methods in all
states. To test TAUTOKO, we ran it on a set of projects and

©EverScience Publications 15



International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016)

mined typestates from the test suite executions for a set of
interesting classes. Unfortunately, for the investigated classes
we found that most typestates only contained a fraction of all
transitions. In particular, most typestates were missing
transitions for failing methods, which renders mined typestates
useless for typestate verification.

We believe that the lack of observed failures is an issue that is
common to many projects—and thus affects every approach for
dynamic specification mining:

1. Most defects due to wrong usage of a class raise
exceptions and are therefore easy to detect and fix.
Thus, a specification miner tool will seldom record
misuse and exceptions when tracing normal applica-
tion executions.

2. Unfortunately, we observed the same problem of
missing exceptions when tracing test suites. Most
developers do not test for exceptions. One explana-
tion for this is that triggering an exception often only
covers a few lines.

3. To generate a complete model, lots of tests are
required. Usually, developers do not have enough
time to write so many tests. Also, developers tend to
skip tests which they consider to be too obvious or are
convinced that they should work.

One way to approach this problem is to use test case generation
to create new tests that execute previously unknown states and
transitions. The general idea of combining specification mining
with test case generation was first described by Xie and Notkin

[3].

In this paper, we extend the original idea to generate tests
specifically targeted at enriching typestate automata. There is a
huge variety of test generation strategies, ranging from
complex static analyses such as symbolic execution [8] to
simple random testing techniques [5].

3.1. Mutating Existing Test Cases

Our initial technique works as follows: In the first step,
TAUTOKO executes the test suite and mines a model for the
CUT. This model is called the initial model. After that, it
attempts to generate mutations to the test suite such that all
methods are executed in all states of the initial model.

TAUTOKO then applies each mutant in isolation and mines
new models from the execution of the modified test suite.
Finally, the initial model and all new models are combined into
the model for the CUT. The advantage of this approach is that
it allows to use the vanilla ADABU tool to mine models from
each test, and TAUTOKO only has to take care of generating
tests and combining models. For every method m that expects
parameters other than the receiver (lines 6-13), TAUTOKO
finds all invocations of m in the initial typestate (line 7), tries
to find a path that leads to s, and creates a mutated test that
suppresses all method calls along the path (line 11).

ISSN: 2454-6410

WWWw.ijeter.everscience.org

To demonstrate the effect of TAUTOKO, which shows the
initial model of class SMTPProtocol mined from an execution
of the project’s test suite. In contrast, the enriched model
generated by TAUTOKO after evaluating all mutations. Not
only does the enriched model contain several additional
transitions, but it now also explicitly lists the exceptional
behavior in its ex state. We will use these models to illustrate
the techniques presented in this section.

Mutant generation starts by statically determining the set of
methods that belong to the CUT or one of its supertypes. For
every such method m, TAUTOKO tries to generate mutations
such that m is invoked in all states of the initial model. To
invoke method m in states, TAUTOKO will either add an
invocation of m, or suppress one or more existing method
invocations. The choice of adding or deleting invocations
depends on the number and types of the parameters m expects.

If m only requires a reference to the receiver object,
TAUTOKO simply adds a new call to m right after a method
call that caused a transition to s in the initial model. For
example, in Fig. 4, to invoke method dropConnection() in state
1, TAUTOKO adds a call to dropConnection() right after the
call to openPort() that causes the transition to state 1.

A problem arises if m expects parameters beyond the receiver
object. In this case, we need to provide values for the
parameters in order to call m. Our initial approach is to reuse
existing invocations of m. If the initial model contains an
invocation of m in another state t, TAUTOKO suppresses
method calls such that the call occurs in state s instead. For
example, to call method authSend(byte[]) in state 0, we can
suppress the invocation of openPort() that causes the transition
from state 0 to 1. If there is more than one possibility,
TAUTOKO generates tests for each possibility.

The advantage of this approach is that it is simple to implement
and works also for complex parameters that are difficult to
generate. However, this approach also has several limitations:

1. Our technique is unable to handle methods with
parameters that are never invoked by the program.
Since we do not synthesize parameter values,
TAUTOKO is unable to generate calls to these
methods.

2. Inorder to invoke a method m which takes parameters
in states, the test case needs to contain a call to m on
a path before states is reached. Otherwise,
TAUTOKO is unable to modify the test accordingly.

3. If TAUTOKO suppresses a method call with a return
value, it has to substitute the result of the call with
default values such as null or false. In some cases, this
breaks the test case and ADABU cannot observe the
method call in the desired state.

Overall, to be able to reliably call methods which take
parameters, we need to apply more generic test generation

©EverScience Publications 16



International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 1, January (2016)

schemes. However, despite the above limitations, our
evaluation results show that even with the simple mutation-
based approach, enriched specifications already contain much
more information and are likely to be much more useful in any
verification setting, iterates over all states s of the initial
typestate. For every method m that expects parameters other
than the receiver (lines 6-13), TAUTOKO finds all invocations
of min the initial typestate (line 7), tries to find a path that leads
to s, and creates a mutated test that suppresses all method calls
along the path (line 11). If the sole parameter to m is the
receiver (lines 14-19), TAUTOKO finds all transitions after
which the object is in state s (line 15) and generates a new test
that invokes m right after the call that caused the transition (line
17). The final loop (lines 23-26) executes all tests, mines new
typestates from each execution, and merges the new typestate
into the current version. After the loop has finished, the
procedure returns the enriched typestate.

3.2. Test Case Generation Using Typestate Automata

The improvements achievable by mutating test cases depend to
a large extent on the type and quality of the already existing
test cases—a simple test case mutation approach can only add
new method calls for which all parameter dependencies are
satisfied. To overcome this limitation, a full-fledged test
generation approach can be employed, such that new objects
are generated as necessary.

Using automatic test generation to bootstrap the process is not
only convenient when no previously written test cases are
available, automatically generated test cases can have very high
coverage and include a significant amount of exceptional
behavior. Thus, even when there is an existing test suite,
additional automatically generated test cases might provide
useful information.

4. CONCLUSIONS

Dynamic specification mining is a promising technique, but its
effectiveness entirely depends on the observed executions. If
not enough tests are available, the resulting specification may
be too incomplete to be useful. By systematically generating
test cases, our TAUTOKO proto-type explores previously
unobserved aspects of the execution space. The resulting
specifications cover more general behavior and much more
exceptional behavior.

An evaluation with six different subjects shows that
TAUTOKO is able to enrich specifications with new
transitions in all cases. With enriched specifications, a typestate
verifier produces significantly more true positives, but the false
positive rate increases due to the nondeterminism of the
underlying model miner. We showed that systematic test case
generation can iteratively learn new states and transitions,
further improving the number of detected defects. A potential
higher number of false negatives illustrates one of the current
problems of auto-mated test case generation—generated tests

ISSN: 2454-6410

WWWw.ijeter.everscience.org

do not resemble real usage. Generally, we expect test case
generation to be applicable to all techniques of dynamic
specification mining, improving the effectiveness of mined
specifications.

We can also generate new executions (test case generation) or
even change their code (mutation analysis). The interplay of
these techniques brings lots of opportunities for exciting
research topics illustrates one of the current problems of auto-
mated test case generation—generated tests do not resemble
real usage. Generally, we expect test case generation to be
applicable to all techniques of dynamic specification mining,
improving the effectiveness of mined specifications.
Verification still produces a considerable number of false
positives, which are partly due to technical limitations of our
typestate verifier implementation. Once a sound analysis such
as WALA becomes publicly available, we expect better
performance that would make typestate verification using
mined models applicable in practice.

Despite the improvements by TAUTOKO, typestate
verification still produces a considerable number of false
positives, which are partly due to technical limitations of our
typestate verifier implementation. Once a sound analysis such
as WALA becomes publicly available, we expect better
performance that would make typestate verification using.

REFERENCES

[1] J.C. King, “Symbolic Execution and Program Testing,” Comm. ACM,
vol. 7, no. 3, 215-249, 1976.

[2] B. Liblit, A. Aiken, A.X. Zheng, and M.I. Jordan, “Bug Isolation via
Remote Program Sampling,” ACM SIGPLAN Notices, vol. 38, no. 5,
pp. 141-154, May 2003.

[3] D. Lorenzoli, L. Mariani, and M. Pezze', “Automatic Generation of
Software Behavioral Models,” Proc. 30th Int’l Conf. Software Eng.,
pp. 501-510, 2008.

[4] R. Majumdar and K. Sen, “Hybrid Concolic Testing,” Proc. 29th Int’l
Conf. Software Eng., pp. 416-426, 2007.

[5] P. Mcminn, “Search-Based Software Test Data Generation: A Survey,”
Software Testing, Verification, and Reliability, vol. 14,
pp. 105-156, 2004.

[6] A. Mesbah and A. van Deursen, “Invariant-Based Automatic Testing of
AJAX User Interfaces,” Proc. |IEEE 31st Int’l Conf. Software Eng., pp.
210-220, 2009.

[7]1 A.Milicevic, S. Misailovic, D. Marinov, and S. Khurshid, “Korat: A Tool
for Generating Structurally Complex Test Inputs,” Proc. 29th Int’l Conf.
Software Eng., pp. 771-774, 2007.

[8] S. Shoham, E. Yahav, S. Fink, and M. Pistoia, “Static Specification
Mining Using Automata-Based Abstractions,” Proc. Int’l Symp.
Software Testing and Analysis, pp. 174-184, 2007.

[9] R.E. Strom and S. Yemini, “Typestate: A Programming Language
Concept for Enhancing Software Reliability,” IEEE Trans. Software
Eng., vol. 12, no. 1, 157-171, 1986.

[10] P. Tonella, “Evolutionary Testing of Classes,” SIGSOFT Software Eng.
Notes, vol. 29, no. 4, 119-128, 2004.

[11] M. Veanes, C. Campbell, W. Schulte, and N. Tillmann, “Online Testing
with Model Programs,” SIGSOFT Software Eng. Notes, vol. 30, no. 5,
273-282, 2005.

[12] A. Wasy lkowski, A. Zeller, and C. Lindig, “Detecting Object Usage
Anomalies,” Proc. Sixth Joint Meeting of the European Software Eng.
Conf. and the ACM SIGSOFT Symp. the Foundations of Software Eng.,
pp. 35-44, 2007

©EverScience Publications 17



