
International Journal of Emerging Technologies in Engineering Research (IJETER)   

Volume 4, Issue 1, January (2016)                                                                         www.ijeter.everscience.org  

  

 

 

ISSN: 2454-6410                                               ©EverScience Publications       14 

    

A Static Typestate Verifier FED with Enriched 

Models 
Immanuel Joshua.F 

M.Tech  , Database Engineering, Indian Institute Of Information Technology Srirangam, India. 

S. Jayanthi 
Assistant Professor, Department of Computer Science and Engineering,  

Anna University of Technology Thiruchirappalli, India. 

Abstract – Dynamic specification mining observes program 

executions to infer models of normal program behavior. What 

makes us believe that we have seen sufficiently many executions? 

The TAUTOKO (“Tautoko” is the Ma˜ori word for “enhance, 

enrich.”) typestate miner generates test cases that cover 

previously unobserved behavior, systematically extending the 

execution space, and enriching the specification. To our 

knowledge, this is the first combination of systematic test case 

generation and typestate mining—a combination with clear 

benefits: On a sample of 800 defects seeded into six Java subjects, 

a static typestate verifier fed with enriched models would report 

significantly more true positives and significantly fewer false 

positives than the initial models. 

Index Terms – Specification mining, test case generation, 

typestate analysis. 

1. INTRODUCTION 

In the past decade, automated validation of software systems 

has made spectacular progress. On the testing side, it is now 

possible to automatically generate test cases that effectively 

explore the entire program structure; on the verification side, 

we can now formally prove the absence of undesired properties 

for software as complex as operating systems [1]. To push 

validation further, however, we need specifications of what the 

software actually should do. Writing such specifications has 

always been hard—and, so far, prohibited the deployment of 

advanced development methods. A potential alternative is 

specification mining—i.e., extracting high-level specifications 

from existing code. In the context of this work, a specification 

is a model that is extracted from an existing program, rather 

than a manually written specification, which usually exists 

before the program is written. 

To have mined specifications reflect normal rather than 

potential usage, dynamic specification mining observes execu-

tions to infer common properties. Typical examples of dynamic 

approaches include DAIKON [10] for invariants or GK-tail for 

object states. A typical application of mined specifications is 

program understanding, and under the assumption that the 

observed runs represent valid usage, the mined specifications 

also represent valid behavior. The common issue of 

specification mining techniques, though, is that they are limited 

to the (possibly small) set of observed. 

To address this problem, we use test case generation to 

systematically enrich dynamically mined specifications. Com-

bined this way, both techniques benefit from each other can 

profit from mined specifications, as their complement points to 

behavior that should be explored. The goal of this work is to 

explore the extent to which the quality of dynamically mined 

specifications can benefit from generated tests. 

In a nutshell, we leverage our earlier work [8], [9] to 

dynamically mine typestate specifications—finite state 

automata describing transitions between object states. The 

initially mined specification contains only observed transitions 

(Section 2). To enrich the specification, our TAUTOKO tool 

generates test cases to cover all possible transitions between all 

observed states, and thus extracts additional states and 

transitions from their executions. These transitions can either 

end in legal states, thus indicating additional legal interaction, 

or they can raise an exception, thus indicating illegal 

interaction. Discovering such illegal interactions is the biggest 

advantage of our approach, as exceptional behavior is rarely 

covered by conventional executions or tests.  How can we 

assess the benefits of such enriched specifications? For this 

purpose, we put them to use in static typestate verification. 

Typestate verification statically discovers illegal transitions. Its 

success depends on the completeness of the given 

specification: The more transitions are known as illegal, the 

more defects can be reported; and the more transitions are 

known as legal, the more likely it is that additional transitions 

can be treated as illegal. We expect that our enriched 

specifications are much closer to completeness than the 

initially mined specification On a sample of 800 defects seeded 

into six Java subjects, we show that our static typestate verifier 

fed with enriched models reports significantly more true 

positives than when being fed with the initial models.1 We 

expect this increased accuracy to generalize toward arbitrary 

uses of mined specifications, and thus conclude (Section 6) that 

test case generation is a useful method to enrich dynamically 

mined specifications. 

This paper extends an earlier version presented at ISSTA 2010 



International Journal of Emerging Technologies in Engineering Research (IJETER)   

Volume 4, Issue 1, January (2016)                                                                         www.ijeter.everscience.org  

  

 

 

ISSN: 2454-6410                                               ©EverScience Publications       15 

    

[7]. The previous version used a test case generation that was 

limited to mutation of existing tests. This paper includes an 

alternative approach which does not require existing test cases. 

Starting with an automatically generated initial test suite 

satisfying a standard criterion such as branch coverage, we 

iteratively derive new test cases from the typestate automaton 

to systematically explore the behavior of the considered target 

class. In this paper, we compare the performance of both 

techniques and discuss advantages and disadvantages of each 

approach. 

2. MINING TYPESTATES 

A typestate automaton (or simply typestate) is a finite state 

automaton which encodes the legal usage of a class under test 

(CUT). Its states represent different states of an object, and 

transitions are labeled with method names. As an example, 

consider the typestate for the SMTPProtocol class from the 

ristretto [7] library. After initialization, an SMTPProtocol 

object is in its initial state 0; calling open-Port() brings it into 

state 1; and calling quit() from this state brings it back into the 

initial state 0. 

If an invocation of method m in state s causes an exception, the 

typestate contains a transition from s to a special state ex 

labeled with m. In our example, this is the case if quit() is 

invoked from the initial state 0; this raises a 

NullPointerException. A static typestate verifier can take this 

very specification and check a client for con-formance; if it is 

possible to invoke quit() while still being in the initial state 0, 

the verifier will flag an error. 

To obtain such typestate specifications from programs, we 

leverage the ADABU tool presented in earlier work [8], [9]. 

ADABU mines so-called object behavior models that capture 

the behavior of objects at runtime. A behavior model for an 

object o is a nondeterministic finite state automaton where 

states are labeled with the values of fields that belong to o, and 

transitions occur when a method invoked on o changes the 

state. Fig. 3 shows an object behavior model for an instance of 

SMTPProtocol. This model was mined by ADABU from an 

execution of the regression test suite for SMTPProtocol. 

To mine such models from a program run, ADABU 

instruments the program such that the values of all fields from 

an instance of the CUT are captured after every method call. 

Each set of field values uniquely describes the state of the 

object, and the sequence of states and method calls uniquely 

describes the object behavior model for the observed instance 

of the CUT. The advantage of using field values to label states 

is that equivalent object states are easy to detect, since they 

have the same labeling. Other automata-based specification 

mining techniques [6] have to resort to heuristics to solve this 

problem, which may lead to overgeneralizations in the learned 

automata. 

The challenge with using concrete field values is that the 

number of states in a model may become very large, and the 

models are difficult to compare. In the example in Fig. 3, the 

value of variable socket is the object identifier for the Socket 

object. In another run of the program, this value might be 

different due to scheduling, and hence the states would be 

different in both models.  

However, this difference is not important both for the behavior 

of the class. Instead, what matters is that the socket is not null 

so that the protocol is able to communicate with the server. 

Hence, instead of using concrete values, ADABU uses abstract 

values: Complex fields are mapped to null or not null, 

numerical fields are mapped to less than, equal to, or larger than 

zero, and Boolean fields remain unchanged.  

This approach is based on work of Liblit et al. [9] that uses the 

same abstractions in the context of bug localization. State 

abstraction reduces the size of the models and makes them 

comparable across program runs. However, this technique also 

entails a loss of information, as the abstract models are less 

detailed than the concrete models. In our experience, the above 

approach provides a good tradeoff between the size of a model 

and its expressiveness. In this paper, we use ADABU to mine 

object behavior models and then convert them into typestate 

automata. The idea for this approach is based on the 

observation that typestates and object behavior models are 

closely related. The two main differences are as follows: 

State. In typestate automata, states are anonymous; in object 

behavior models, they are labeled with the values of fields. 

Exceptions. Typestates represent failing method calls by 

transitions to a special state ex. In object behavior models, 

information about exceptions is only stored at edges. 

1. The automaton is initialized with two states labeled 

start and ex.  

2. Each state s of the behavior model is assigned a unique 

number n, and a corresponding state labeled n is added 

to the typestate.  

3. For each invocation of a method m between two states 

si and sj, a new transition labeled with m is added to the 

typestate: If the invocation raised an exception, the 

transition is added from si to ex, otherwise it is added 

from si to sj.  

The typestate introduced earlier was not specified manually, 

but automatically obtained from the object behavior model. For 

the remainder of this paper, we will use the term “mine 

typestate automata” to summarize the process of mining object 

behavior models and converting them to typestate automata. 

3. ENRICHING TYPESTATES 

To yield precise results and few false positives during 

verification, a typestate needs to be complete, i.e., it needs to 

contain all relevant states and transitions for all methods in all 

states. To test TAUTOKO, we ran it on a set of projects and 



International Journal of Emerging Technologies in Engineering Research (IJETER)   

Volume 4, Issue 1, January (2016)                                                                         www.ijeter.everscience.org  

  

 

 

ISSN: 2454-6410                                               ©EverScience Publications       16 

    

mined typestates from the test suite executions for a set of 

interesting classes. Unfortunately, for the investigated classes 

we found that most typestates only contained a fraction of all 

transitions. In particular, most typestates were missing 

transitions for failing methods, which renders mined typestates 

useless for typestate verification. 

We believe that the lack of observed failures is an issue that is 

common to many projects—and thus affects every approach for 

dynamic specification mining: 

1. Most defects due to wrong usage of a class raise 

exceptions and are therefore easy to detect and fix. 

Thus, a specification miner tool will seldom record 

misuse and exceptions when tracing normal applica-

tion executions. 

2. Unfortunately, we observed the same problem of 

missing exceptions when tracing test suites. Most 

developers do not test for exceptions. One explana-

tion for this is that triggering an exception often only 

covers a few lines. 

3.    To generate a complete model, lots of tests are 

required. Usually, developers do not have enough 

time to write so many tests. Also, developers tend to 

skip tests which they consider to be too obvious or are 

convinced that they should work. 

One way to approach this problem is to use test case generation 

to create new tests that execute previously unknown states and 

transitions. The general idea of combining specification mining 

with test case generation was first described by Xie and Notkin 

[3]. 

In this paper, we extend the original idea to generate tests 

specifically targeted at enriching typestate automata. There is a 

huge variety of test generation strategies, ranging from 

complex static analyses such as symbolic execution [8] to 

simple random testing techniques [5]. 

3.1. Mutating Existing Test Cases  

Our initial technique works as follows: In the first step, 

TAUTOKO executes the test suite and mines a model for the 

CUT. This model is called the initial model. After that, it 

attempts to generate mutations to the test suite such that all 

methods are executed in all states of the initial model.  

TAUTOKO then applies each mutant in isolation and mines 

new models from the execution of the modified test suite. 

Finally, the initial model and all new models are combined into 

the model for the CUT. The advantage of this approach is that 

it allows to use the vanilla ADABU tool to mine models from 

each test, and TAUTOKO only has to take care of generating 

tests and combining models. For every method m that expects 

parameters other than the receiver (lines 6-13), TAUTOKO 

finds all invocations of m in the initial typestate (line 7), tries 

to find a path that leads to s, and creates a mutated test that 

suppresses all method calls along the path (line 11).  

To demonstrate the effect of TAUTOKO, which shows the 

initial model of class SMTPProtocol mined from an execution 

of the project’s test suite. In contrast, the enriched model 

generated by TAUTOKO after evaluating all mutations. Not 

only does the enriched model contain several additional 

transitions, but it now also explicitly lists the exceptional 

behavior in its ex state. We will use these models to illustrate 

the techniques presented in this section. 

Mutant generation starts by statically determining the set of 

methods that belong to the CUT or one of its supertypes. For 

every such method m, TAUTOKO tries to generate mutations 

such that m is invoked in all states of the initial model. To 

invoke method m in states, TAUTOKO will either add an 

invocation of m, or suppress one or more existing method 

invocations. The choice of adding or deleting invocations 

depends on the number and types of the parameters m expects. 

If m only requires a reference to the receiver object, 

TAUTOKO simply adds a new call to m right after a method 

call that caused a transition to s in the initial model. For 

example, in Fig. 4, to invoke method dropConnection() in state 

1, TAUTOKO adds a call to dropConnection() right after the 

call to openPort() that causes the transition to state 1. 

A problem arises if m expects parameters beyond the receiver 

object. In this case, we need to provide values for the 

parameters in order to call m. Our initial approach is to reuse 

existing invocations of m. If the initial model contains an 

invocation of m in another state t, TAUTOKO suppresses 

method calls such that the call occurs in state s instead. For 

example, to call method authSend(byte[]) in state 0, we can 

suppress the invocation of openPort() that causes the transition 

from state 0 to 1. If there is more than one possibility, 

TAUTOKO generates tests for each possibility. 

The advantage of this approach is that it is simple to implement 

and works also for complex parameters that are difficult to 

generate. However, this approach also has several limitations: 

1.   Our technique is unable to handle methods with 

parameters that are never invoked by the program. 

Since we do not synthesize parameter values, 

TAUTOKO is unable to generate calls to these 

methods. 

2. In order to invoke a method m which takes parameters 

in states, the test case needs to contain a call to m on 

a path before states is reached. Otherwise, 

TAUTOKO is unable to modify the test accordingly. 

3. If TAUTOKO suppresses a method call with a return 

value, it has to substitute the result of the call with 

default values such as null or false. In some cases, this 

breaks the test case and ADABU cannot observe the 

method call in the desired state. 

Overall, to be able to reliably call methods which take 

parameters, we need to apply more generic test generation 



International Journal of Emerging Technologies in Engineering Research (IJETER)   

Volume 4, Issue 1, January (2016)                                                                         www.ijeter.everscience.org  

  

 

 

ISSN: 2454-6410                                               ©EverScience Publications       17 

    

schemes. However, despite the above limitations, our 

evaluation results show that even with the simple mutation-

based approach, enriched specifications already contain much 

more information and are likely to be much more useful in any 

verification setting, iterates over all states s of the initial 

typestate. For every method m that expects parameters other 

than the receiver (lines 6-13), TAUTOKO finds all invocations 

of m in the initial typestate (line 7), tries to find a path that leads 

to s, and creates a mutated test that suppresses all method calls 

along the path (line 11). If the sole parameter to m is the 

receiver (lines 14-19), TAUTOKO finds all transitions after 

which the object is in state s (line 15) and generates a new test 

that invokes m right after the call that caused the transition (line 

17). The final loop (lines 23-26) executes all tests, mines new 

typestates from each execution, and merges the new typestate 

into the current version. After the loop has finished, the 

procedure returns the enriched typestate. 

3.2. Test Case Generation Using Typestate Automata 

The improvements achievable by mutating test cases depend to 

a large extent on the type and quality of the already existing 

test cases—a simple test case mutation approach can only add 

new method calls for which all parameter dependencies are 

satisfied. To overcome this limitation, a full-fledged test 

generation approach can be employed, such that new objects 

are generated as necessary.  

Using automatic test generation to bootstrap the process is not 

only convenient when no previously written test cases are 

available, automatically generated test cases can have very high 

coverage and include a significant amount of exceptional 

behavior. Thus, even when there is an existing test suite, 

additional automatically generated test cases might provide 

useful information. 

4. CONCLUSIONS 

Dynamic specification mining is a promising technique, but its 

effectiveness entirely depends on the observed executions. If 

not enough tests are available, the resulting specification may 

be too incomplete to be useful. By systematically generating 

test cases, our TAUTOKO proto-type explores previously 

unobserved aspects of the execution space. The resulting 

specifications cover more general behavior and much more 

exceptional behavior. 

An evaluation with six different subjects shows that 

TAUTOKO is able to enrich specifications with new 

transitions in all cases. With enriched specifications, a typestate 

verifier produces significantly more true positives, but the false 

positive rate increases due to the nondeterminism of the 

underlying model miner. We showed that systematic test case 

generation can iteratively learn new states and transitions, 

further improving the number of detected defects. A potential 

higher number of false negatives illustrates one of the current 

problems of auto-mated test case generation—generated tests 

do not resemble real usage. Generally, we expect test case 

generation to be applicable to all techniques of dynamic 

specification mining, improving the effectiveness of mined 

specifications. 

We can also generate new executions (test case generation) or 

even change their code (mutation analysis). The interplay of 

these techniques brings lots of opportunities for exciting 

research topics illustrates one of the current problems of auto-

mated test case generation—generated tests do not resemble 

real usage. Generally, we expect test case generation to be 

applicable to all techniques of dynamic specification mining, 

improving the effectiveness of mined specifications. 

Verification still produces a considerable number of false 

positives, which are partly due to technical limitations of our 

typestate verifier implementation. Once a sound analysis such 

as WALA becomes publicly available, we expect better 

performance that would make typestate verification using 

mined models applicable in practice. 

Despite the improvements by TAUTOKO, typestate 

verification still produces a considerable number of false 

positives, which are partly due to technical limitations of our 

typestate verifier implementation. Once a sound analysis such 

as WALA becomes publicly available, we expect better 

performance that would make typestate verification using. 

REFERENCES 

[1] J.C. King, “Symbolic Execution and Program Testing,” Comm. ACM, 
vol. 7, no. 3, 215-249, 1976.   

[2] B. Liblit, A. Aiken, A.X. Zheng, and M.I. Jordan, “Bug Isolation via 
Remote Program Sampling,” ACM SIGPLAN Notices, vol. 38, no. 5,  
pp. 141-154, May 2003.  

[3] D. Lorenzoli, L. Mariani, and M. Pezze`, “Automatic Generation of 
Software Behavioral Models,” Proc. 30th Int’l Conf. Software Eng.,  
pp. 501-510, 2008.  

[4] R. Majumdar and K. Sen, “Hybrid Concolic Testing,” Proc. 29th Int’l 
Conf. Software Eng., pp. 416-426, 2007.  

[5] P. Mcminn, “Search-Based Software Test Data Generation: A Survey,” 
Software Testing, Verification, and Reliability, vol. 14,   
pp. 105-156, 2004.  

[6] A. Mesbah and A. van Deursen, “Invariant-Based Automatic Testing of 
AJAX User Interfaces,” Proc. IEEE 31st Int’l Conf. Software Eng., pp. 
210-220, 2009.  

[7] A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid, “Korat: A Tool 
for Generating Structurally Complex Test Inputs,” Proc. 29th Int’l Conf. 
Software Eng., pp. 771-774, 2007.  

[8] S. Shoham, E. Yahav, S. Fink, and M. Pistoia, “Static Specification 
Mining Using Automata-Based Abstractions,” Proc. Int’l Symp. 
Software Testing and Analysis, pp. 174-184, 2007.  

[9] R.E. Strom and S. Yemini, “Typestate: A Programming Language 
Concept for Enhancing Software Reliability,” IEEE Trans. Software 
Eng., vol. 12, no. 1, 157-171, 1986.  

[10] P. Tonella, “Evolutionary Testing of Classes,” SIGSOFT Software Eng. 
Notes, vol. 29, no. 4, 119-128, 2004.  

[11] M. Veanes, C. Campbell, W. Schulte, and N. Tillmann, “Online Testing 
with Model Programs,” SIGSOFT Software Eng. Notes, vol. 30, no. 5, 
273-282, 2005.  

[12] A. Wasy lkowski, A. Zeller, and C. Lindig, “Detecting Object Usage 
Anomalies,” Proc. Sixth Joint Meeting of the European Software Eng. 
Conf. and the ACM SIGSOFT Symp. the Foundations of Software Eng., 
pp. 35-44, 2007 


